English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113321/144300 (79%)
Visitors : 51110669      Online Users : 905
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/130994
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/130994


    Title: 延伸LDA主題模型於企業破產預測
    Extending the Latent Dirichlet Allocation Model for Corporate Default Prediction
    Authors: 彭昱齊
    Peng, Yu-Chi
    Contributors: 江彌修
    Chiang, Mi-Hsiu
    彭昱齊
    Peng, Yu-Chi
    Keywords: 主題模型
    企業破產預警
    10-K報告
    Topic modeling
    LDA
    JST
    Corporate bankruptcy prediction
    10-K
    Date: 2020
    Issue Date: 2020-08-03 17:38:59 (UTC+8)
    Abstract: 近年來,文字分析(textual analysis)的技術越來越成熟,主題模型(topic model)為其中一種文字分析方式,用於萃取文本的潛在主題(latent topic)。本研究使用潛在狄利克雷分布(latent Dirichlet allocation, LDA)主題模型及其延伸的情感主題混合模型(joint sentiment-topic model, JST)與反向情感主題混合模型(reverse joint sentiment-topic model, Reverse-JST)從10-K報吿文本中生成主題變數,結合財務比率變數,以羅吉斯迴歸模型(logistic regression model)方式,建構破產預測模型。
    根據實證結果顯示,納入主題變數的破產預測模型能夠有效提升模型分類績效,且結合情感分析之主題變數更能助於優化預測模型,因而可以從 10-K 報告中的用詞觀察到是否企業破產的跡象。
    In recent years, the technique of textual analysis has been well-developed. Topic modeling is part of a class of textual analysis methods, which extracts latent topics from documents. This paper uses LDA topic modeling and its extensions, JST and Reverse-JST, to generate topic-related variables from 10-K filings, and constructs corporate default prediction model in the form of logistic regression with topic-related variables and financial variables as independent variables.
    According to the empirical results, when topic-related variables are included in the prediction model, the performance of classification is enhanced. In addition, considering sentiment analysis, topic-related variables are useful to optimize the prediction model. Therefore, by looking at the word usage of 10-K filings, investors can be aware of the sign of corporate bankruptcy.
    Reference: Altman, E. I. (1968). Financial ratios, discriminant analysis and prediction of corporate bankruptcy. The Journal of Finance, 23(4), 589-609.
    Black, F., & Scholes, M. (1973). The pricing of options and corporate liabilities, The Journal of Political Economy, 81(3),637-654.
    Blei, D. M., Ng, A. Y., & Jordan, M. I. (2003). Latent Dirichlet allocation. Journal of Machine Learning Research, 3(Jan), 993-1022.
    De Finetti, B. (1990). Theory of probability. Vol. 1-2. Chichester: John Wiley & Sons Ltd.
    Deerwester, S., Dumais, S., Landauer, T., Furnas, G., & Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the American Society of Information Science, 41(6), 391-407.
    Duan, J. C., Sun, J. and Wang, T. (2012). Multiperiod corporate default prediction- A forward intensity approach, Journal of Econometrics, 170, 191-209.
    Heinrich, G. (2005). Parameter estimation for text analysis. Web: http://www.arbylon.net/publications/text-est/pdf.
    Hofmann, T. (1999). Probabilistic latent semantic analysis. Proceedings of the Fifteenth Conference on Uncertainty in Artificial Intelligence, Morgan Kaufmann Publishers Inc., 289-296.
    Lin, C., He, Y., Everson, R., & Rüger, S. (2012). Weakly supervised joint sentiment-topic detection from text. IEEE Transactions on Knowledge and Data Engineering, 24(6), 1134-1145.
    Lopatta, K., Gloger, M. A., & Jaeschke, R. (2017). Can language predict bankruptcy? The explanatory power of tone in 10-K filings. Accounting Perspectives, 16(4), 315-343.
    Loughran, T., & McDonald, B. (2016). Textual analysis in accounting and finance: a survey, Journal of Accounting Research, 54(4),1187-1230.
    Loughran, T., & McDonald, B. (2011). When is a liability not a liability? Textual analysis, dictionaries, and 10-Ks. The Journal of Finance, 66(1), 35-65.
    Merton, R. (1974). On the pricing of corporate debt: The risk structure of interest rates. The Journal of Finance, 29, 449-470.
    Minka, T., & Lafferty, J. (2002). Expectation-propagation for the generative aspect model. Proceedings of the Eighteenth Conference on Uncertainty in Artificial Intelligence, 352-359.
    Nguyen, T. H., & Shirai, K. (2015). Topic modeling based sentiment analysis on social media for stock market. Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, 1, 1354-1364.
    Ohlson, J. A. (1980). Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research, 18, 109-131.
    Description: 碩士
    國立政治大學
    金融學系
    107352028
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0107352028
    Data Type: thesis
    DOI: 10.6814/NCCU202000746
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    202801.pdf2557KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback