政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/130987
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113451/144438 (79%)
造访人次 : 51290963      在线人数 : 845
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/130987


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/130987


    题名: 深度學習結合凱利法則之投資策略: 以台灣股市為實證
    Investment Strategy for Deep Learning and Kelly Criterion: Evidence in Taiwan Stock Market
    作者: 胡詠惟
    Hu, Yong-Wei
    贡献者: 廖四郎
    Liao, Szu-Lang
    胡詠惟
    Hu, Yong-Wei
    关键词: 量化交易
    長時間短期記憶模型
    卷積神經網路
    凱利法則
    深度學習
    日期: 2020
    上传时间: 2020-08-03 17:37:41 (UTC+8)
    摘要: 本研究從台灣50成分股中,篩選出44家公司當作樣本。蒐集2007-2019年間的股價資料,以技術指標當作模型的輸入變數,應用卷積神經網路、長時間短期記憶模型於投資策略上,並結合凱利法則配置投資組合權重。實證結果發現長時間短期記憶模型在訓練期間(2007-2015)、測試期間(2016-2019)內預測股票漲跌準確率表現皆比卷積神經網路優異。實證結果也顯示使用長時間短期記憶模型建構之策略相比元大台灣50 ETF績效,各年度夏普值大多數表現得比元大台灣50 ETF優異。顯示使用深度學習與凱利法則在投資策略上,可以在控制風險的前提下,得到不錯的策略績效。
    This Research selects 44 companies from constituent stocks of Taiwan 50 Index as a sample. Collect stock price data from 2007 to 2019 and use technical indicators as input variables of the model, then apply Convolutional Neural Networks、Long Short Term Memory Network to investment strategies. In this research, Kelly criterion is used to allocate stock weights. Empirical results show that Long Short Term Memory Network performs better than Convolutional Neural Network in the accuracy of predicting stock movement during the training period (2007-2015) and the test period (2016-2019). Empirical results also show that most of the annual Sharpe ratios of portfolios constructed by Long Short Term Memory Network are greater than that of Yuanta Taiwan 50 ETF. In the end, this research shows that using deep learning method and Kelly criterion in portfolio construction can get good performance on the premise of controlling risks.
    參考文獻: [1] Adebiyi, A. A., Adewumi, A. O., & Ayo, C. K. (2014). Comparison of ARIMA and artificial neural networks models for stock price prediction. Journal of Applied Mathematics, 2014, 1-7.
    [2] Asness, C. S., Ilmanen, A., Israel, R., & Moskowitz, T. J. (1998). Investing with style. Journal of Investment Management, 13(11), 27-63.
    [3] Byrnes, T., & Barnett, T. (2018). Generalized framework for applying the Kelly criterion to stock markets. International Journal of Theoretical and Applied Finance, 21(5), 1-13.
    [4] Bai, S., Kolter, J. Z., & Koltun, V. (2018). An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. Retrieved April 11, 2020, from https://arxiv.org/abs/1803.01271.
    [5] Black, F., & Litterman, R. (1991). Asset allocation: combining investor views with market equilibrium. The Journal of Fixed Income, 1(2), 7-18.
    [6] Black, F., & Litterman, R. (1992). Global portfolio optimization. Financial Analysts Journal, 48(5), 28-43.
    [7] Elman, J. L. (1990). Finding structure in time. Cognitive Science, 14, 179-211.
    [8] Hoseinzade, E., & Haratizadeh, S. (2018). CNNpred: CNN-based stock market prediction using a diverse set of variables. Expert Systems with Applications, 129, 273-285.
    [9] He, G., & Litterman, R. (1999). The intuition behind Black-Litterman model portfolios. New York, NY: Goldman Sachs.
    [10] Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural computation, 9(8), 1735-1780.
    [11] Kelly, J. L. (1956) A new interpretation of information rate. Bell System Technical Journal, 35(4), 917-926.
    [12] Kwon, Y. K., & Moon, B. R. (2007). A hybrid neurogenetic approach for stock forecasting. IEEE Transactions on Neural Networks, 18(3), 851-864.
    [13] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard, W., & Jackel, L. D. (1989). Backpropagation applied to handwritten zip code recognition. Neural Computation, 1, 541-551.
    [14] Markowitz, H. (1952). Portfolio selection. The journal of finance, 7(1), 77-91.
    [15] Nelson, D. M. Q., Pereira, A. C. M., & De Oliveira, R. A. (2017). Stock market`s price movement prediction with LSTM neural networks. Proceedings of 2017 International Joint Conference on Neural Networks, 1419-1426. doi: 10.1109/IJCNN.2017.7966019
    [16] Ohlsson, E., & Markusson, O. (2017). Application of the Kelly criterion on a self-financing trading portfolio - An empirical study on the Swedish stock market from 2005-2015. Retrieved April 11, 2020, from https://reurl.cc/oLb6Xg.
    [17] Ross, S. (1976). The arbitrage theory and capital asset pricing. Journal of Economic Theory, 13, 341-360.
    [18] Rounaghi, M. M., & Zadeh, F. M. (2016). Investigation of market efficiency and financial stability between S&P 500 and London stock exchange: Monthly and yearly forecasting of time series stock returns using ARMA model. Physica A: Statistical Mechanics and its Applications, 456, 10-21.
    [19] Sharpe, W. F. (1964). Capital asset prices: a theory of market equilibrium under conditions of risk. Journal of Finance, 19(3), 425-442.
    [20] Sharpe, W. F. (1992). Asset allocation: management style and performance management. Journal of Investment Management, 18(2), 7-19.
    [21] Wu, M. E., & Chung, W. H. (2018). A novel approach of option portfolio construction using the Kelly criterion. IEEE Access, 6(1), 53044-53052.
    [22] Zhai, Y., Hsu, A., & Halgamuge, S. K. (2007). Combining news and technical indicators in daily stock price trends prediction. In D. Liu, S. Fei, Z. Hou, H. Zhang & C. Sun (Eds.), Advances in Neural Networks – ISNN 2007 (pp. 1087-1096). Berlin, Germany: Springer.
    描述: 碩士
    國立政治大學
    金融學系
    107352015
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0107352015
    数据类型: thesis
    DOI: 10.6814/NCCU202000612
    显示于类别:[金融學系] 學位論文

    文件中的档案:

    没有与此文件相关的档案.



    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈