Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/130975
|
Title: | 應用任務服務適配理論探討銀行行動服務之持續使用 Investigating the Impact of Task-Service-Fit in The Bank Mobile Service |
Authors: | 張益菕 Chang, Yi-Lun |
Contributors: | 張欣綠 Chang, Hsin-Lu 張益菕 Chang, Yi-Lun |
Keywords: | 行動銀行 任務服務適配程度 服務內容品質 服務傳輸品質 任務狀況 使用者滿意度 使用者體驗 持續使用意願 Bank mobile service Task-service-fit Service content quality Service delivery quality Task conditions User satisfaction Service experience Continuance intention |
Date: | 2020 |
Issue Date: | 2020-08-03 17:35:12 (UTC+8) |
Abstract: | 隨著科技的進步,消費者可以透過智慧型手機完成日常任務。因此,越來越多的銀行已經開發了向其客戶提供行動銀行服務的APP。在這項研究中,我們有興趣調查影響用戶繼續使用行動銀行APP的意願的因素。與傳統的任務技術契合度研究不同,本研究採用服務主導邏輯,並在行動銀行APP的架構中定義了任務-服務契合度的概念,然後提出行動銀行服務質量在某些任務條件下會影響用戶的持續意圖。為了區分任務條件,我們使用任務的複雜性和直觀性作為調節變項,這將調節用戶感知的服務體驗,服務質量和滿意度的有效性。因此,我們的研究可以為銀行設計移動服務任務,推廣更便捷的服務,提高用戶的持續使用意願和使用頻率提供建議。 Currently, consumers can use their mobile phones to complete their daily tasks. Thus, a growing number of banks have developed mobile applications (apps) that offer digital banking services to their customers. In this research, we are interested in investigating the factors that influence users’ willingness to continue using mobile apps. Different from the traditional research of task-technology fit, our study adopts service-dominant logic and defines the concept of task-service fit in the context of banking apps and then proposes that mobile banking service quality influences users’ continuous intentions in certain task conditions. To distinguish the task conditions, we use task complexity and intuitiveness as the moderator, which would moderate the effectiveness of users’ perceived service experience, service quality, and satisfaction. Therefore, our research can provide suggestions to help banks design their mobile service tasks, promote more convenient services, and enhance their users’ continuance intention and use frequency. |
Reference: | Anol Bhattacherjee. (2001). Understanding information systems continuance- an expectation confirmation model. Misq, 25(3), 351–370. Belanger, F., Collins, R. W., &Cheney, P. H. (2001). Technology Requirements and Work Group Communication for Telecommuters. Information Systems Research, Vol. 12, pp. 155–176. https://doi.org/10.1287/isre.12.2.155.9695 Britton, A., Setchi, R., &Marsh, A. (2013). Intuitive interaction with multifunctional mobile interfaces. Journal of King Saud University - Computer and Information Sciences, 25(2), 187–196. https://doi.org/10.1016/j.jksuci.2012.11.002 Campbell, D. J. (1988). Task Complexity: A Review and Analysis. Academy of Management Review, 13(1), 40–52. https://doi.org/10.5465/amr.1988.4306775 Chan, Y. E., Huff, S. L., Barclay, D. W., &Copeland, D. G. (1997). Business Strategic Orientation, Information Systems Strategic Orientation, and Strategic Alignment. Information Systems Research, Vol. 8, pp. 125–150. https://doi.org/10.1287/isre.8.2.125 Chen, C. F., &Chen, F. S. (2010). Experience quality, perceived value, satisfaction and behavioral intentions for heritage tourists. Tourism Management, 31(1), 29–35. https://doi.org/10.1016/j.tourman.2009.02.008 DeLone, W. H., &McLean, E. R. (2003). model of information systems success: A ten-year updated. Journal of Management Information Systems, 19(4), 9–30. https://doi.org/10.1073/pnas.0914199107 Edvardsson, B. (2005). Service quality: beyond cognitive assessment. Managing Service Quality: An International Journal, 15(2), 127–131. https://doi.org/10.1108/09604520510585316 Fang, Y. H. (2017). Exploring task-service fit and usefulness on branded applications continuance. Journal of Services Marketing, 31(6), 574–588. https://doi.org/10.1108/JSM-07-2016-0256 Fornell, C., &Larcker, D. F. (1981). Evaluating Structural Equation Models with Unobservable Variables and Measurement Error. Journal of Marketing Research, 18(1), 39. https://doi.org/10.2307/3151312 Froehle, C. M., &Roth, A.V. (2004). New measurement scales for evaluating perceptions of the technology-mediated customer service experience. Journal of Operations Management, 22(1), 1–21. https://doi.org/10.1016/j.jom.2003.12.004 Gefen, D, Straub, D., Gefen, D., &Straub, D. (2005). A Practical Guide to Factorial Validity Using PLS-Graph: Tutorial and Annotated Example. In Communications of the Association for Information Systems (Vol. 16). Retrieved from http://dstraub.cis.gsu.edu:88/quant/ Gefen, David, Straub, D., &Boudreau, M.-C. (2000). Structural Equation Modeling and Regression: Guidelines for Research Practice. Communications of the Association for Information Systems, 4(October). https://doi.org/10.17705/1cais.00407 Hair, J. F., Sarstedt, M., Hopkins, L., &Kuppelwieser, V. G. (2014). Partial least squares structural equation modeling (PLS-SEM): An emerging tool in business research. European Business Review, 26(2), 106–121. https://doi.org/10.1108/EBR-10-2013-0128 Hajiheydari, N., &Ashkani, M. (2018). Mobile application user behavior in the developing countries: A survey in Iran. Information Systems, 77, 22–33. https://doi.org/10.1016/j.is.2018.05.004 Henseler, J., Ringle, C. M., &Sinkovics, R. R. (2009). The use of partial least squares path modeling in international marketing. Advances in International Marketing, 20(2009), 277–319. https://doi.org/10.1108/S1474-7979(2009)0000020014 Hoehle, H., &Venkatesh, V. (2015). Mobile application usability: conceptualization. Research Article Information Systems, 39(2), 435–472. Homburg, C., Jozić, D., &Kuehnl, C. (2017). Customer experience management: toward implementing an evolving marketing concept. Journal of the Academy of Marketing Science, 45(3), 377–401. https://doi.org/10.1007/s11747-015-0460-7 Hong, S. J., Thong, J. Y. L., &Tam, K. Y. (2006). Understanding continued information technology usage behavior: A comparison of three models in the context of mobile internet. Decision Support Systems, 42(3), 1819–1834. https://doi.org/10.1016/j.dss.2006.03.009 Hsiao, C. H., Chang, J. J., &Tang, K. Y. (2016). Exploring the influential factors in continuance usage of mobile social Apps: Satisfaction, habit, and customer value perspectives. Telematics and Informatics, 33(2), 342–355. https://doi.org/10.1016/j.tele.2015.08.014 Huizing, A., Koster, E., &Bouman, W. (1997). Balance in Business Reengineering: An Empirical Study of Fit and Performance. Journal of Management Information Systems, 14(1), 93–118. https://doi.org/10.1080/07421222.1997.11518155 Hulland, J. (1999). Use of partial least squares (PLS) in strategic management research: a review of four recent studies. Strategic Management Journal, 20(2), 195–204. https://doi.org/10.1002/(sici)1097-0266(199902)20:2<195::aid-smj13>3.3.co;2-z Humbani, M., &Wiese, M. (2019). An integrated framework for the adoption and continuance intention to use mobile payment apps. International Journal of Bank Marketing. https://doi.org/10.1108/IJBM-03-2018-0072 Hwang, S. Y., &Kim, S. (2018). Does mIM experience affect satisfaction with and loyalty toward O2O services? Computers in Human Behavior, 82(2018), 70–80. https://doi.org/10.1016/j.chb.2017.12.044 James, J. (2010). Penetration and Growth Rates of Mobile Phones in Developing Countries: An Analytical Classification. Social Indicators Research, 99(1), 135–145. https://doi.org/10.1007/s11205-009-9572-0 Kant, R., &Jaiswal, D. (2017). The impact of perceived service quality dimensions on customer satisfaction: An empirical study on public sector banks in India. International Journal of Bank Marketing, 35(3), 411–430. https://doi.org/10.1108/IJBM-04-2016-0051 Khazanchi, D. (2005). Information technology (IT) appropriateness: The contingency theory of “FIT” and IT implementation in small and medium enterprises. Journal of Computer Information Systems, 45(3), 88–95. https://doi.org/10.1080/08874417.2005.11645846 Kim, C., Mirusmonov, M., &Lee, I. (2010). An empirical examination of factors influencing the intention to use mobile payment. Computers in Human Behavior, 26(3), 310–322. https://doi.org/10.1016/j.chb.2009.10.013 Kim, E., Lin, J.-S., &Sung, Y. (2013). To App or Not to App: Engaging Consumers via Branded Mobile Apps. Journal of Interactive Advertising, 13(1), 53–65. https://doi.org/10.1080/15252019.2013.782780 Kim, H.-W., Xu, Y., &Koh, J. (2004). A Comparison of Online Trust Building Factors between Potential Customers and Repeat Customers. Journal of the Association for Information Systems, 5(10), 392–420. https://doi.org/10.17705/1jais.00056 Li, H., Gupta, A., Luo, X., &Warkentin, M. (2011). Exploring the impact of instant messaging on subjective task complexity and user satisfaction. European Journal of Information Systems, 20(2), 139–155. https://doi.org/10.1057/ejis.2010.59 Macaranas, A., Antle, A. N., &Riecke, B. E. (2015). What is Intuitive Interaction? Balancing Users’ Performance and Satisfaction with Natural User Interfaces. Interacting with Computers, 27(3), 357–370. https://doi.org/10.1093/iwc/iwv003 Mano, H., &Oliver, R. L. (1993). Assessing the Dimensionality and Structure of the Consumption Experience : Evaluation , Feeling , and Satisfaction Stable URL : http://www.jstor.org/stable/2489359 REFERENCES Linked references are available on JSTOR for this article : You may need to log. 20(3), 451–466. Markun Hanjaya, S. ., Kenny, S. K., &Freddy Gunawan, S.S., S. E. (2019). Understanding factors influencing consumers online purchase intention via mobile app. MINIB, 32(2), 175–206. Narayan, S. W., &Sahminan, S. (2018). Has Fintech Influenced Indonesia’S Exchange Rate and Inflation? Buletin Ekonomi Moneter Dan Perbankan, 21(2), 189–202. https://doi.org/10.21098/bemp.v21i2.966 Özer, A., Argan, M. T., &Argan, M. (2013). The Effect of Mobile Service Quality Dimensions on Customer Satisfaction. Procedia - Social and Behavioral Sciences, 99, 428–438. https://doi.org/10.1016/j.sbspro.2013.10.511 Parasuraman, A., &Zeithaml, V. (1988). SERVQUAL: a multiple-item scale for measuring consumer perceptions of service …. Retailing: Critical …. Retrieved from http://books.google.co.uk/books?hl=en&lr=&id=Rt96wAigg2oC&oi=fnd&pg=PA140&dq=over+50%27s+consumer+behaviour&ots=pPv45yAHvK&sig=AL2ewACQwL3_En3qjvd1Bo5k9fw Rose, S., Clark, M., Samouel, P., &Hair, N. (2012). Online Customer Experience in e-Retailing: An empirical model of Antecedents and Outcomes. Journal of Retailing, 88(2), 308–322. https://doi.org/10.1016/j.jretai.2012.03.001 Saunders, C. S., Premkumar, G., &Ramamurthy, K. (2005). Information Processing View of Organizations : An Exploratory Examination of Fit in the Context of Interorganizational Relationships. Journal of Management Information Systems, 22(1), 257–294. Tam, C., &Oliveira, T. (2016). Performance impact of mobile banking: using the task-technology fit (TTF) approach. International Journal of Bank Marketing, 34(4), 434–457. https://doi.org/10.1108/IJBM-11-2014-0169 Tan, C., Benbasat, I., &Cenfetelli, R. T. (2013). IT-M EDIATED C USTOMER S ERVICE C ONTENT AND D ELIVERY IN E LECTRONIC G OVERNMENTS : A N E MPIRICAL I NVESTIGATION OF THE A NTECEDENTS OF S ERVICE Q UALITY 1. 37(1), 77–109. Teo, T. S. H., &Men, B. (2008). Knowledge portals in Chinese consulting firms: A task-technology fit perspective. European Journal of Information Systems, 17(6), 557–574. https://doi.org/10.1057/ejis.2008.41 Ullrich, D., &Diefenbach, S. (2015). INTUI. Exploring the Facets of Intuitive Interaction. Mensch & Computer 2010, 1–10. https://doi.org/10.1524/9783486853483.251 Vargo, S. L., &Lusch, R. F. (2004). Evolving to a New Dominant Logic for Marketing. Journal of Marketing, 68(1), 1–17. https://doi.org/10.1509/jmkg.68.1.1.24036 Venkatraman, A. N. (1989). The Concept of Fit in Strategy Research : Toward Verbal and Statistical Correspondence Linked references are available on JSTOR for this article : The Concept of Fit in Strategy Research : Toward Verbal and Statistical Correspondence. 14(3), 423–444. https://doi.org/10.5465/AMR.1989.4279078 Wang, Q., Yang, S., Liu, M., Cao, Z., &Ma, Q. (2014). An eye-tracking study of website complexity from cognitive load perspective. Decision Support Systems, 62, 1–10. https://doi.org/10.1016/j.dss.2014.02.007 Wixom, Barbara H; Todd, P. A. (2005). A Theoretical Integration of User Satisfaction and Technology Acceptance. Information Systems Research, 16(1), 85–102. https://doi.org/10.1016/j.jaci.2012.05.050 Wood, R. E. (1986). Task Complexity: Definition. Organizational Behavior and Human Decision Processes, 37, 60–82. Xu, J. D., Benbasat, I., &Cenfetelli, R. T. (2013). Integrating service quality with system and information quality: An empirical test in the E-service context. MIS Quarterly: Management Information Systems, 37(3), 777–794. https://doi.org/10.25300/MISQ/2013/37.3.05 Yang, S., Lu, Y., Chen, Y., &Gupta, S. (2015). Understanding consumers’ mobile channel continuance: An empirical investigation of two fitness mechanisms. Behaviour and Information Technology, 34(12), 1135–1146. https://doi.org/10.1080/0144929X.2014.988176 Zhao, L., Lu, Y., Zhang, L., &Chau, P. Y. K. (2012). Assessing the effects of service quality and justice on customer satisfaction and the continuance intention of mobile value-added services: An empirical test of a multidimensional model. Decision Support Systems, 52(3), 645–656. https://doi.org/10.1016/j.dss.2011.10.022 Zhou, T. (2012). Understanding users’ initial trust in mobile banking: An elaboration likelihood perspective. Computers in Human Behavior, 28(4), 1518–1525. https://doi.org/10.1016/j.chb.2012.03.021 Zigurs, I., &Buckland, B. K. (1998). A theory of task/technology fit and group support systems effectiveness. MIS Quarterly: Management Information Systems, 22(3), 313–334. |
Description: | 碩士 國立政治大學 資訊管理學系 107356007 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0107356007 |
Data Type: | thesis |
DOI: | 10.6814/NCCU202000932 |
Appears in Collections: | [資訊管理學系] 學位論文
|
Files in This Item:
File |
Description |
Size | Format | |
600701.pdf | | 1217Kb | Adobe PDF2 | 85 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|