政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/130544
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51594237      Online Users : 819
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/130544


    Title: LFM模型下可贖回CMS價差區間計息型商品之評價與風險管理
    Valuation and Risk Management of Callable Range Accrual Linked to CMS Spread under Lognormal Forward LIBOR Model
    Authors: 賴映筑
    Lai, Ying-Zhu
    Contributors: 林士貴
    岳夢蘭

    Lin, Shih-Kuei
    Yueh, Meng-Lan

    賴映筑
    Lai, Ying-Zhu
    Keywords: 固定期限利率交換
    區間計息
    對數常態遠期LIBOR模型
    最小平方蒙地卡羅模擬法
    風險價值
    期望損失
    Constant Maturity Swap
    Range Accrual
    Lognormal Forward LIBOR Model
    Least Square Monte Carlo simulation
    Value at Risk
    Expected Shortfall
    Date: 2020
    Issue Date: 2020-07-01 13:41:40 (UTC+8)
    Abstract: 近來全球金融市場波動頻繁,加上投資人的風險管理意識增強,在資產組合的配置上,衍生性金融商品扮演著不可或缺的角色。本論文評價目前市面上常見的利率衍生性商品,此商品為以固定期限利率交換(Constant Maturity Swap, CMS)的利差做為連結標的,且附帶「提前贖回條款」的區間計息型利率交換。本文採用對數常態遠期LIBOR模型(Lognormal Forward LIBOR Model, LFM)及最小平方蒙地卡羅模擬法(Least Squares Monte Carlo Method)評價此商品的理論價值。此外,巴塞爾銀行監管委員會已針對全球銀行業監管的框架進行修正,變更之後的方案被稱之為「巴塞爾資本協定四」(Basel IV)。該方案改變了過去衡量極端損失的風險度量指標,從過去風險價值(Value at Risk,簡稱VaR)的計算,過渡為期望損失(Expected Shortfall,簡稱ES)的計量方法。因此,本文透過敏感度分析(Sensitivity Analysis) 和風險值及期望損失的計算,探討該商品之風險管理。
    In recent years, global financial markets have been fluctuating frequently. With the increasing of investors` awareness in risk management, derivative commodities play indispensable roles in the allocation of asset portfolios. This paper evaluates a common interest rate derivative product currently traded on the market, which is range accrual Constant Maturity Swap (CMS) with “the Call Provision”. Lognormal Forward LIBOR Model and the least square Monte Carlo simulation method are used as evaluation methods to evaluate the theoretical value of this product.
    In addition, the Basel Committee on Banking Supervision (BCBS) revised the framework for global banking supervision, which is called “Basel IV”. It has changed the risk measurement indicators that measure extreme losses, from the calculation of Value at Risk (VaR) in the past to the measurement method of Expected Shortfall (ES). Therefore, we discuss the risk management of this product by using sensitivity analysis, and the calculation of VaR and ES.
    Reference: 林淑蓉(2006). 風險值與風險管理策略之研究, 國立中央大學財務金融研究所碩士論文.

    陳松男(2006a). 初階金融工程學與 Matlab. C++ 電算應用, 新陸書局.

    陳松男(2006b). 利率金融工程學-理論模型及實務應用, 新陸書局.

    謝振耀(2000). 台灣債券投資組合風險值之評估, 國立政治大學統計研究所碩士論文.

    Artzner, P., Delbaen, F., Eber, J. M., & Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9(3), 203-228.

    Aussenegg, W., & Pichler, S. (1997). Empirical evaluation of simple models to calculate value-at-risk of fixed income instruments. Working paper, Vienna University of Technology.

    Brigo, D. & Mercurio, F. (2007). Interest Rate Models:Theory and Practice: with smile, inflation and credit. Springer Science & Business Media.

    Hendricks, D. (1996). Evaluation of value-at-risk models using historical data. Economic Policy Review, 2(1).

    Hull, J. (2012). Risk management and financial institutions. John Wiley & Sons.

    Jamshidian, F. (1997). LIBOR and swap market models and measures. Finance and Stochastics, 1(4), 293-330.

    Jorion, P. (1997). Value at risk: the new benchmark for controlling market risk. Irwin Professional Pub.

    Longstaff, F. A., & Schwartz, E. S. (2001). Valuing American options by simulation: a simple least-squares approach. The Review of Financial Studies, 14(1), 113-147.

    Lu, Y., & Neftci, S. (2003). Convexity adjustment and forward libor model: Case of constant maturity swaps. Working Paper No.115, National Centre of Competence in Research Financial Valuation and Risk Management.
    Description: 碩士
    國立政治大學
    金融學系
    107352031
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0107352031
    Data Type: thesis
    DOI: 10.6814/NCCU202000614
    Appears in Collections:[Department of Money and Banking] Theses

    Files in This Item:

    File Description SizeFormat
    203101.pdf1764KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback