English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113822/144841 (79%)
Visitors : 51874821      Online Users : 323
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/130542
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/130542


    Title: 可贖回CMS價差區間計息型商品之評價分析:基於LFM與最小平方蒙地卡羅法之模擬加速實證
    Pricing of Callable Range Accrual Linked to CMS Spread: Empirical Analysis with Multiprocessing Based on Lognormal Forward LIBOR Model and Least-Squares Monte Carlo Simulation
    Authors: 王韋之
    Wang, Wei-Chih
    Contributors: 林士貴
    岳夢蘭

    Lin, Shih-Kuei
    Yueh, Meng-Lan

    王韋之
    Wang, Wei-Chih
    Keywords: 利率衍生性商品
    對數常態遠期利率市場模型
    固定期限交換利率
    最小平方蒙地卡羅法
    平行運算
    Interest Rate Derivative
    Lognormal Forward LIBOR Model
    Constant Maturity Swap
    Least-Squares Monte Carlo Simulation
    Multiprocessing
    Date: 2020
    Issue Date: 2020-07-01 13:41:12 (UTC+8)
    Abstract: 本研究使用對數常態遠期利率市場模型與最小平方蒙地卡羅法,對沒有封閉解之可贖回固定期限交換利率價差區間計息商品進行評價。透過市場資料建構殖利率曲線與遠期利率曲線,而後基於對數常態遠期利率市場模型之動態過程,將其離散化後進行遠期利率模擬並計算遠期交換利率,最後使用最小平方蒙地卡羅法求解商品價值。本研究利用市場資料估計校準參數,基於兩種波動度結構與兩種實務上常用之相關係數假設進行模擬。此外,在結合Python平行運算的基礎上,整體的評價計算與模擬速度得到較大提升。
    In this paper, we apply Lognormal Forward LIBOR Model (LFM) and Least-Squares Monte Carlo simulation (LSMC) to price the Constant Maturity Swap (CMS) Spread Range Accruals, which have no closed form solution. We build the yield curve and forward rate curve with market data. Based on the dynamic process under LFM, we discretize the formula to calculate forward rate and forward swap rate. And the derivatives are evaluated by using Least-Squares Monte Carlo method. The parameters are estimated with two types of volatility assumptions and two types of correlation assumptions based on the practical experience. Besides, combined with multiprocessing, the speed of valuation and simulation has been greatly increased.
    Reference: 中文部分
    陳松男 (2006)。利率金融工程學-理論模型及實務應用。台北:新陸書局。
    陳威光 (2010)。衍生性商品:選擇權、期貨、交換與風險管理。台北:智勝文化
    馮冠群 (2018)。可贖回CMS區間計息型商品之評價與實證分析:LIBOR與GARCH市場模型之比較。國立政治大學統計研究所碩士論文,未出版。

    英文部分
    Andersen, L. B. (1999). A simple approach to the pricing of Bermudan swaptions in the multi-factor Libor market model.
    Andersen, L. B., & Brotherton-Ratcliffe, R. (2001). Extended LIBOR market models with stochastic volatility.
    Boyle, P. P. (1977). Options: A monte carlo approach. Journal of financial economics, 4(3), 323-338.
    Brigo, D., Capitani, C., & Mercurio, F. (2001). On the joint calibration of the Libor market model to caps and swaptions market volatilities.
    Brigo, D., & Liinev, J. (2002). On the distributional distance between the Libor and the Swap market models. Preprint.
    Brigo, D., & Mercurio, F. (2007). Interest rate models-theory and practice: with smile, inflation and credit. Springer Science & Business Media.
    Gatarek, D. (2003). Calibration of the LIBOR market model: three prescriptions.
    Goschen, W. S. (2005). Incompatibility of lognormal forward-Libor and Swap market models. University of Cape Town,
    Hull, J., & White, A. (1988). The use of the control variate technique in option pricing. Journal of Financial and Quantitative analysis, 23(3), 237-251.
    Hull, J. C., & White, A. D. (2000). Forward rate volatilities, swap rate volatilities, and implementation of the LIBOR market model. The Journal of Fixed Income, 10(2), 46-62.
    Jamshidian, F. (1997). LIBOR and swap market models and measures. Finance and Stochastics, 1(4), 293-330.
    Joshi, M. S., & Kwon, O. K. (2010). Monte Carlo market Greeks in the displaced diffusion LIBOR market model.
    13. Longstaff, F.A., & Schwartz, E.S. (2001). Valuing American options by simulation: a simple least-squares approach. The review of financial studies, 14(1), 113-147.
    Mercurio, F. (2010). LIBOR market models with stochastic basis. Bloomberg education and quantitative research paper(2010-05).
    Moreno, M., & Navas, J. F. (2003). On the robustness of least-squares Monte Carlo (LSM) for pricing American derivatives. Review of Derivatives Research, 6(2), 107-128.
    Pietersz, R. (2003). The LIBOR market model. Universität Leiden.
    Piterbarg, V. (2003). Computing deltas of callable LIBOR exotics in forward LIBOR models.
    Piterbarg, V. V. (2003). A practitioner’s guide to pricing and hedging callable LIBOR exotics in forward LIBOR models. Preprint.
    Description: 碩士
    國立政治大學
    金融學系
    107352012
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0107352012
    Data Type: thesis
    DOI: 10.6814/NCCU202000618
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    201201.pdf1340KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback