政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/130541
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 50962766      Online Users : 969
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/130541


    Title: 卷積神經網路於黃金期貨技術指標投資之應用
    Application of Convolutional Neural Network on Gold Future Technical Index
    Authors: 蔡宛伶
    Tsai, Wan-Ling
    Contributors: 林士貴
    蔡銘峰

    Lin, Shih-Kuei
    Tsai, Ming-Feng

    蔡宛伶
    Tsai, Wan-Ling
    Keywords: 卷積神經網路
    深度學習
    技術分析
    技術指標
    黃金期貨
    Convolutional Neural Network
    Deep Learning
    Technical Analysis
    Technical Index
    Gold Future
    Date: 2020
    Issue Date: 2020-07-01 13:41:00 (UTC+8)
    Abstract: 本文探討卷積神經網路與技術指標結合之黃金期貨交易投資策略,以黃金期貨的技術線圖作為模型訓練資料,篩選出報酬率夠高的交易訊號,達成精準投資之目的。
    在資本市場當中,許多人憑藉著技術分析資訊找出股價波動的規律,但除了傳統的數值資料之外,技術分析當中還有許多技術線圖,提供我們具象化的資訊,這些圖像資訊遂成為非常重要的投資決策依據。
    深度學習在近十年中有非常顯著的成長,其中的卷積神經網路尤其在圖像辨識領域有長足的突破,如今卷積神經網路已成為主流圖像辨識所使用的方法,因此本文應用卷積神經網路,透過技術分析中大量的技術線圖,旨在分類出具有獲利潛力的交易訊號。
    This article is mainly about applying convolutional neural networks to gold futures technical indicators trading strategy. The technical indicator graph of gold futures is used as model training data to screen out trading signals with a high return rate, aiming to increase average return.
    In the capital market, many people rely on technical analysis to find out the pattern of stock price. In addition to traditional numerical data, there are many technical indicator graphs could provide specific information. The image information is then become a very important basis for investment decisions.
    Deep learning has grown significantly in the past decade. Among all kinds of deep learning models, the convolutional neural network has achieved a great performance on image recognition. This article applied convolutional neural networks to technical analysis by using technical indicator graphs, aiming to classify trading signals with potential high-profit.
    Reference: 一、中文文獻
    [1] 李杰穎. (2019). 卷積神經網路結合技術指標交易策略在台灣加權指數期貨之應用.
    [2] 劉昭雨,2017,卷積神經網路在金融技術指標之應用

    二、英文文獻
    [3] Malkiel, B. G., & Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. The journal of Finance, 25(2), 383-417.
    [4] Brock, W., Lakonishok, J., & LeBaron, B. (1992). Simple technical trading rules and the stochastic properties of stock returns. The Journal of finance, 47(5), 1731-1764.
    [5] Pruitt, S. W., & White, R. E. (1988). The CRISMA Trading System: Who Says Technical Analysis Can`. Journal of Portfolio Management, 14(3), 55.
    [6] Tsai, C. F., & Wang, S. P. (2009, March). Stock price forecasting by hybrid machine learning techniques. In Proceedings of the international multiconference of engineers and computer scientists (Vol. 1, No. 755, p. 60).
    [7] Di Persio, L., & Honchar, O. (2016). Artificial neural networks architectures for stock price prediction: Comparisons and applications. International journal of circuits, systems and signal processing, 10(2016), 403-413.
    [8] Tsantekidis, A., Passalis, N., Tefas, A., Kanniainen, J., Gabbouj, M., & Iosifidis, A. (2017, July). Forecasting stock prices from the limit order book using convolutional neural networks. In 2017 IEEE 19th Conference on Business Informatics (CBI) (Vol. 1, pp. 7-12). IEEE.
    [9] Pyo, S., Lee, J., Cha, M., & Jang, H. (2017). Predictability of machine learning techniques to forecast the trends of market index prices: Hypothesis testing for the Korean stock markets. PloS one, 12(11).
    [10] Alexander, S. S. (1961). Price movements in speculative markets: Trends or random walks. Industrial Management Review (pre-1986), 2(2), 7.
    Description: 碩士
    國立政治大學
    金融學系
    107352006
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0107352006
    Data Type: thesis
    DOI: 10.6814/NCCU202000508
    Appears in Collections:[Department of Money and Banking] Theses

    Files in This Item:

    File Description SizeFormat
    200601.pdf2815KbAdobe PDF20View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback