English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51091778      Online Users : 892
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/130538
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/130538


    Title: 建構技術分析危機預警條件預測股市泡沫與均數復歸研究
    Using Technical Analysis Indicators as Crisisi Conditions to Identify Stock Market Bubbles and Mean Reversion
    Authors: 董鍾祥
    Tung, Chung-Hsiang
    Contributors: 廖四郎
    Liao, Szu-Lang
    董鍾祥
    Tung, Chung-Hsiang
    Keywords: 泡沫
    技術指標
    乖離
    移動平均線
    均數復歸
    Bubble
    Technical Indicators
    Bias
    Moving Average
    Mean Reversion
    Date: 2020
    Issue Date: 2020-07-01 13:40:20 (UTC+8)
    Abstract: 回顧383年金融泡沫史,每次泡沫破裂都造成金融風暴和嚴重的經濟衰退,本文試圖運用技術分析的指標過熱且正乖離過大,建構股市泡沫的危機預警條件:隨機指標(KD)的K值和相對強弱勢指標(RSI)的6RSI值>90且乖離率位於5%~15%,作為股市泡沫之預測工具,來預測股市泡沫,期望在泡沫破裂前提早發現,降低金融風暴的衝擊。現以已開發市場中的美國、日本和德國股市,以及新興市場中的中國、巴西和南韓股市(1995-2019年)為實證對象,用技術指標的危機預警條件預測泡沫和均數復歸的時間分布。從實證結果發現,已開發市場的波動性較小,調降預警條件可提高泡沫預測準確率,其泡沫破裂時間較長約6個月而新興市場的波動性較大,調升預警條件可提高其泡沫預測準確率,其泡沫破裂的時間較短約3個月內;不論基準泡沫預警條件或調整後較佳的泡沫預警條件,都能發揮泡沫的預警作用。2020年初美股引發全球股市泡沫,在泡沫破裂前,那斯達克和標普500指數皆符合本研究的泡沫預警條件,即時且準確地發揮了預警功能,成功避開股市泡沫。另外,我們從全球主要股市驗證結果得知,泡沫破裂的時間幾乎等於均數復歸的時間,全球41個主要股市中有高達31個股市的均數復歸時間為0週,比例高達75.61%。由驗證結果推論得知,均數復歸的時間有兩種:
    泡沫破裂點到均數復歸的時間約為0~1週。
    泡沫預警點到均數復歸的時間約5週至10週之內。
    Looking back on the history of the financial bubbles in 383 years, each bubble burst caused a financial turmoil and severe economic recession. This paper attempts to use technical analysis indicators to construct a crisis warning condition of the stock market bubble: The K value of the Stochastics Oscillator (KD) and the 6RSI value of the Relative Strength Index (RSI) are both greater than 90, and the Bias is between 5% and 15%. It is hoped that it can be used as a tool for predicting financial bubbles in the stock market to reduce the impact of financial turmoil. The U.S., Japan and Germany stock markets in the developed markets, and China, Brazil and South Korea stock markets in the emerging markets (1995-2019) are the empirical objects. The crisis warning conditions of the technical indicators are applied to predict the financial bubbles, and the time distribution of the mean reversion. From the empirical results, it is found that the volatilities of the developed markets are smaller, and thus lowering the warning conditions can improve the accuracy of bubble prediction, and the bubble burst time is about 6 months. The emerging markets are more volatile, and raising the warning conditions can improve the accuracy of bubble prediction, and the bubble burst time is shorter in about 3 months. Regardless of the baseline bubble warning conditions or the adjusted bubble warning conditions, the bubble warning function can be useful. At the beginning of 2020, US stocks triggered a global stock market bubble. Before the bubble burst, the Nasdaq and S&P 500 index both met the bubble warning conditions of this study. Therefore, the warning conditions immediately and accurately predicted this financial bubble. In addition, we know from the empirical results of the world`s major stock markets that the bubble burst time is almost equal to the mean reversion time. Among the 41 major stock markets in the world, the average reversion time of up to 31 stock markets is 0 weeks, with a proportion as high as 75.61%. It is inferred from the empirical results that there are two kinds of the mean reversion:
    The time from the bubble burst point to the mean return is approximately 0 to 1 week.
    The time from the bubble warning point to the mean return is about 5 weeks to 10 weeks.
    Reference: 石大剛(2013)。技術分析在台港中股市之應用-全球金融危機為例。未出版之碩士論文,雲林科技大學,台灣。
    米楠(2015)。證券市場技術分析有效性的行為金融學論證。現代商業,14,
    235-237。
    李春安、類惠貞 (2009)。正向回饋交易與股市崩盤,中華管理評論,12,2,1-28。
    宋玉臣、李楠博 (2013)。 股票收益率均值回歸理論及數量方法研究[J],商業研究,11,129-137
    祁紅光 (2007)。基於均值回歸理論和數量分析方法的研究。科技信息, 9。
    吳世農(2004)。股市泡沫的生成機理和度量。財經科學,4,6-11。
    林黎、任若恩(2012)。泡沫隨機臨界時點超指數膨脹模型:中國股市泡沫的檢驗與識別。系統工程理論與實踐,32,4。
    周愛民(1998)。股市泡沫及其檢驗方法。經濟科學,5,44-49。
    楊崇齡、劉錫標(2010)。技術分析有效基礎的行為金融分析。時代金融,3,24-26。
    潘國陵(2000)。股市泡沫研究。金融研究,7,71-79。
    Shiller, R.J.,(2001)。非理性繁榮。北京:中國人民大學出版社。

    Balvers, R., Wu, Y., & Gilliland, E. (2000). Mean reversion across national stock markets and parametric contrarian investment strategies. The Journal of Finance, 55(2), 745-772.Journal of Finance, 55, 745-772.
    Barberis, N., Shleifer, A., & Vishny, R. (1998). A model of investor sentiment. Journal of financial economics, 49(3), 307-343.
    Baytas, A., & Cakici, N. (1999). Do markets overreact: international evidence. Journal of Banking & Finance, 23(7), 1121-1144.
    Blanchard, O. J., & Watson, M. W. (1982). Bubbles, rational expectations and financial markets (No. w0945). National Bureau of economic research.
    Campbell, J. Y. Shiller, Robert J.(1998),“Valuation Ratios and the Long-Run Stock Market Outlook”. Journal of Portfolio Management, 24(2), 11-17.
    Campbell, J. Y., & Shiller, R. J. (2001). Valuation ratios and the long-run stock market outlook: An update (No. w8221). National bureau of economic research.
    Daniel, K., Hirshleifer, D., & Subrahmanyam, A. (1998). Investor psychology and security market under‐and overreactions. the Journal of Finance, 53(6), 1839-1885.
    De Bondt, W. F., & Thaler, R. (1985). Does the stock market overreact?. The Journal of finance, 40(3), 793-805.
    De Long, J. B., Shleifer, A., Summers, L. H., & Waldmann, R. J. (1990). Noise trader risk in financial markets. Journal of political Economy, 98(4), 703-738.
    Diba, B. T., & Grossman, H. I. (1988). Explosive rational bubbles in stock prices?. The American Economic Review, 78(3), 520-530.
    Engle, R. F., & Granger, C. W. (1987). Co-integration and error correction: representation, estimation, and testing. Econometrica: journal of the Econometric Society, 251-276.
    Evans, G. W. (1991). Pitfalls in testing for explosive bubbles in asset prices. The American Economic Review, 81(4), 922-930.
    Granville, J. E. (1976). Granville`s New Strategy of Daily Stock Market Timing for Maximum Profit. Prentice-Hall.
    Hansen, L. P., & Singleton, K. J. (1982). Generalized instrumental variables estimation of nonlinear rational expectations models. Econometrica: Journal of the Econometric Society, 1269-1286.
    Hong, H., & Stein, J. C. (1999). A unified theory of underreaction, momentum trading, and overreaction in asset markets. The Journal of finance, 54(6), 2143-2184.
    Jegadeesh, N., & Titman, S. (1993). Returns to buying winners and selling losers: Implications for stock market efficiency. The Journal of finance, 48(1), 65-91.
    Sornette, D., Johansen, A., & Bouchaud, J. P. (1996). Stock market crashes, precursors and replicas. Journal de Physique I, 6(1), 167-175.
    Johansen, A., & Sornette, D. (2000). The Nasdaq crash of April 2000: Yet another example of log-periodicity in a speculative bubble ending in a crash. The European Physical Journal B-Condensed Matter and Complex Systems, 17(2), 319-328.
    Johansen, A., & Sornette, D. (2001). Bubbles and anti-bubbles in Latin-American, Asian and Western stock markets: An empirical study. International Journal of Theoretical and Applied Finance, 4(06), 853-920.
    LeRoy, S. F., & Porter, R. D. (1981). The present-value relation: Tests based on implied variance bounds. Econometrica: Journal of the Econometric Society, 555-574.
    Liew, J., & Vassalou, M. (2000). Can book-to-market, size and momentum be risk factors that predict economic growth?. Journal of Financial Economics, 57(2), 221-245.
    Lin, L., & R.E. REN, (2012). Super-exponential bubble model with stochastic mean-reverting critical times: Application in Chinese stock market. Systems Engineering——Theory & Practice, 32(4): 673-683.
    Lo, A. W., & MacKinlay, A. C. (1988). Stock market prices do not follow random walks: Evidence from a simple specification test. The review of financial studies, 1(1), 41-66.
    Malliaropulos, D., & Priestley, R. (1999). Mean reversion in Southeast Asian stock markets. Journal of Empirical Finance, 6(4), 355-384.
    Mankiw, N. G., Romer, D., & Shapiro, M. D. (1985). An unbiased reexamination of stock market volatility. The Journal of Finance, 40(3), 677-687.
    Poterba, J. M., & Summers, L. H. (1988). Mean reversion in stock prices: Evidence and implications. Journal of financial economics, 22(1), 27-59.
    Santos, M. S., & Woodford, M. (1997). Rational asset pricing bubbles. Econometrica: Journal of the Econometric Society, 19-57.
    Shiller, R.J., (1981) Do stock prices move too much to be justified by subsequent changes in dividends. American Economic Review, 71(3), 421-436
    Shiller, R. J. (1990). Speculative prices and popular models. Journal of Economic perspectives, 4(2), 55-65.
    Shiller, R.J., (2000). Irrational Exuberance. Princeton University, NJ.
    Sornette, D., & Andersen, J. V. (2002). A nonlinear super-exponential rational model of speculative financial bubbles. International Journal of Modern Physics C, 13(02), 171-187.
    Sornette, D. (2003). Critical market crashes. Physics Reports, 378(1), 1-98.
    Tirole, J. (1982). On the possibility of speculation under rational expectations. Econometrica: Journal of the Econometric Society, 1163-1181.
    Topol, R. (1991). Bubbles and volatility of stock prices: effect of mimetic contagion. The Economic Journal, 101(407), 786-800.
    West, K. D. (1987). A specification test for speculative bubbles. The Quarterly Journal of Economics, 102(3), 553-580.
    West, K. D. (1988). Bubbles, fads and stock price volatility tests: a partial evaluation. The Journal of Finance, 43(3), 639-656.
    White, C. B. (2000). What P/E will the US stock market support?. Financial Analysts Journal, 56(6), 30-38.
    Description: 博士
    國立政治大學
    金融學系
    103352507
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0103352507
    Data Type: thesis
    DOI: 10.6814/NCCU202000524
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    250701.pdf8773KbAdobe PDF224View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback