政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/130199
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113873/144892 (79%)
造访人次 : 51903372      在线人数 : 486
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻
    政大機構典藏 > 理學院 > 應用數學系 > 期刊論文 >  Item 140.119/130199


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/130199


    题名: On the Quantitative Behavior of the Linear Cellular Automata.
    作者: 班榮超
    Ban, Jung-Chao
    Akin, Hassan
    Chang, Chih-Hung
    贡献者: 應數系
    关键词: Cellular automata;measure entropy;directional entropy;maximal measure
    日期: 2013-01
    上传时间: 2020-06-22 13:42:21 (UTC+8)
    摘要: In this paper, we study the quantitative behavior of one-dimensional linear cellular automata <[-r,r ], defined by local rule f (x-r , . . . , xr ) = �r i=-r λi xi (mod m), acting on the space of all doubly infinite sequences with values in a finite ring Zm, m ≥ 2. Once generalize the formulas given by Ban et al. [J. Cellular Automata 6 (2011) 385-397] for measure-theoretic entropy and topological pressure of one-dimensional cellular automata, we calculate the measure entropy and the topological pressure of the linear cellular automata with respect to the Bernoulli measure on the set ZZm. Also, it is shown that the uniform Bernoulli measure is the unique equilibrium measure for linear cellular automata. We compare values of topological entropy and topological directional entropy by using the formula obtained by Akın [J. Computation and Appl. Math. 225 (2) (2009) 459-466]. The topological directional entropy is interpreted by means of figures. As an application, we demonstrate that the Hausdorff of the limit set of a linear cellular automaton is the unique root of Bowen’s equation. Some open problems remain to be of interest.
    關聯: Journal of Cellular Automata, Vol.8, No.3-4, pp.205-231
    数据类型: article
    显示于类别:[應用數學系] 期刊論文

    文件中的档案:

    档案 大小格式浏览次数
    109.pdf496KbAdobe PDF2320检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈