政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/130195
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 114105/145137 (79%)
造訪人次 : 52159299      線上人數 : 555
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 理學院 > 應用數學系 > 期刊論文 >  Item 140.119/130195
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/130195


    題名: Measure of the full Hausdorff dimension for sofic affine-invariant sets on T^2
    作者: 班榮超
    Ban, Jung-Chao
    Chang, Chih-Hung
    Chen, Ting-Ju
    貢獻者: 應數系
    關鍵詞: sofic measure;Sierpiński carpet;matrix-valued potential;Gibbs measure;a-weighted thermodynamic
    日期: 2018-05
    上傳時間: 2020-06-22 13:41:43 (UTC+8)
    摘要: Measures of the full Hausdorff dimension for sofic affine-invariant sets on T 2. (English) £ ¢ ¡ Zbl 07128819 Ji, Lizhen (ed.) et al., In this paper, the authors have studied the measure of the full dimension for a general Sierpiński carpet. They have firstly given a criterion for the measure of the full Hausdorff dimension of a Sierpiński carpet, that is, "the conditional equilibrium measure of zero potential with respect to some Gibbs measure ν α of matrix-valued potential αN". In the second part of the paper, they have given a criterion for the Markov projection measure and estimated its number of steps by means of the induced matrix-valued potential. The main results of this paper are the following: Theorem 1. Let Z be a Markov Sierpiński carpet and N = (N ij) n i,j=1 be the induced potential from A. Assume N is irreducible, then (i) The following statements are equivalent. (a) µ is the unique measure of the full Hausdorff dimension. (b) µ is the unique conditional equilibrium measure of the zero potential function on Z with respect to ν α , where ν α is the unique equilibrium measure of the matrix-valued potential αN = (∥N J ∥ α) J∈Y *. (ii) The following Hausdorff dimension formula holds: dim H Z = h top (Z) log m + P (σ Y , αN) log n Theorem 2. Let Z be a Markov Sierpiński carpet and N = (N ij) n i,j=1 be the induced matrix-valued potential from A. Then, ν is a k-step Markov measure on Y if and only if N satisfies the Markov condition of order k. Furthermore, if ν is a k-step Markov measure, then k ≤ m − n. Theorem 3. If N satisfies the Markov condition of order k, then ν is the unique maximal measure of the subshift of finite type X M with adjacency matrix M = [m (J, J ′)] J,J ′ ∈Y k. Theorem 4. Let Z = Z (m,n) (A) be a Markov Sierpiński carpet with A, assume that N the induced potential from A is irreducible. Then, dim H Z = 1 log n lim n→∞ 1 n log ∑ J∈Yn ∥N J ∥ α where α = log n/ log m. Theorem 5. Let N = (N i) i∈S be a family of d × d matrices with entries in R. If N = (N i) i∈S is irreducible. Then for each α > 0, P (σ Y , αN) has a unique α-equilibrium measure µ α which satisfies the Gibbs property: ∀n ∈ N and J ∈ Y n , there exists c > 0 such that c −1 exp(−nP (σ Y , αN)) ∥N J ∥ α ≤ µ α ([J]) ≤ c exp(−nP (σ Y , αN)) ∥N J ∥ α .
    關聯: AMS/IP Studies in Advanced Mathematics, Vol.2018
    資料類型: article
    DOI 連結: http://dx.doi.org/10.13140/RG.2.2.16505.21600
    DOI: 10.13140/RG.2.2.16505.21600
    顯示於類別:[應用數學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    index.html0KbHTML2332檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋