English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51677281      Online Users : 552
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 期刊論文 >  Item 140.119/129982
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/129982


    Title: Neural network equations and symbolic dynamics
    Authors: 班榮超
    Ban, Jung-Chao
    Contributors: 應數系
    Keywords: Cellular neural networks Multi-layer CNN;Inhomogeneous CNN;Separation property;Topological entropy
    Date: 2015-08
    Issue Date: 2020-05-27 09:01:15 (UTC+8)
    Abstract: In this paper we provide an up-to-date survey on the study of the complexity of the mosaic solutions on neural network equations. Three types of equations, namely, cellular neural networks (CNNs), multi-layer CNN (MCNNs) and inhomogeneous CNNs (ICNNs) are discuss herein. Such topic strong related to the learning algorithm and training process on neural network equations. Each neural network produces different mosaic solution space, and each mosaic solution space induces an different symbolic dynamics. To understand the complexity (spatial entropy) of the mosaic solution space for a given neural network equation, we need to identify which the underlying symbolic space is, then using the established knowledge of symbolic dynamical systems to compute its spatial entropy. Recently there has been substantial progress in this field. This paper is a comprehensive survey of this field. It provides a summary of the interesting results in this field. It is our hope that the paper will provide a good overview of major results and techniques, and a friendly entry point for anyone who is interested in studying problems in this field.
    Relation: International Journal of Machine Learning and Cybernetics, Vol.6, No.4, pp.567-579
    Data Type: article
    DOI 連結: https://doi.org/10.1007/s13042-014-0244-2
    DOI: 10.1007/s13042-014-0244-2
    Appears in Collections:[應用數學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    438.pdf775KbAdobe PDF2187View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback