政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/129119
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 114393/145446 (79%)
造訪人次 : 53035267      線上人數 : 371
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 資訊學院 > 資訊科學系 > 期刊論文 >  Item 140.119/129119
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/129119


    題名: Learning English–Chinese bilingual word representations from sentence-aligned parallel corpus
    作者: 黃瀚萱*
    Chen, Hsin-Hsi
    Yen, An-Zi
    Chen, Hsin-Hsi
    貢獻者: 資科系
    關鍵詞: Cross-lingual applications;Distributed word representation;Word alignment
    日期: 2019-07
    上傳時間: 2020-03-05 14:40:57 (UTC+8)
    摘要: Representation of words in different languages is fundamental for various cross-lingual applications. In the past researches, there was an argument in using or not using word alignment in learning bilingual word representations. This paper presents a comprehensive empirical study on the uses of parallel corpus to learn the word representations in the embedding space. Various nonalignment and alignment approaches are explored to formulate the contexts for Skip-gram modeling. In the approaches without word alignment, concatenating A and B, concatenating B and A, interleaving A with B, shuffling A and B, and using A and B separately are considered, where A and B denote parallel sentences in two languages. In the approaches with word alignment, three word alignment tools, including GIZA++, TsinghuaAligner, and fast_align, are employed to align words in sentences A and B. The effects of alignment direction from A to B or from B to A are also discussed. To deal with the unaligned words in the word alignment approach, two alternatives, using the words aligned with their immediate neighbors and using the words in the interleaving approach, are explored. We evaluate the performance of the adopted approaches in four tasks, including bilingual dictionary induction, cross-lingual information retrieval, cross-lingual analogy reasoning, and cross-lingual word semantic relatedness. These tasks cover the issues of translation, reasoning, and information access. Experimental results show the word alignment approach with conditional interleaving achieves the best performance in most of the tasks. 2019 Elsevier Ltd. All rights reserved.
    關聯: Computer Speech & Language, Vol.56, pp.52-72
    資料類型: article
    DOI 連結: https://doi.org/10.1016/j.csl.2019.01.002
    DOI: 10.1016/j.csl.2019.01.002
    顯示於類別:[資訊科學系] 期刊論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    182.pdf2840KbAdobe PDF2328檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋