政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/129022
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113318/144297 (79%)
造訪人次 : 51066225      線上人數 : 908
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 資訊學院 > 資訊科學系 > 會議論文 >  Item 140.119/129022
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/129022


    題名: Enhancing object detection in the dark using U-Net based restoration module
    作者: 彭彥璁
    Peng, Yan-Tsung
    Huang, Y.-T.*
    Peng, Y.-T.
    Liao, W.-H.
    貢獻者: 資科系
    日期: 2019-09
    上傳時間: 2020-03-02 15:23:15 (UTC+8)
    摘要: In recent years, we have witnessed the widespread application of deep-learning techniques to various surveillance tasks, including human tracking and counting, abnormal behavior detection, and video segmentation. In most cases, the input images/videos are assumed to possess adequate visual quality to guarantee satisfactory performance. However, accuracy may be adversely affected when the input data are degraded by factors such as excessive noise or poor lighting conditions. In the paper, we develop a deep neural network based on the U-Net architecture that acts as a pre-processing module to restore images/videos with nonuniform light sources to ensure the accuracy of the subsequent object detection process. Experimental results on the VisDrone20 19 dataset [1] demonstrate the effectiveness of the proposed method, achieving a remarkable 5% increase in average recall. We expect the framework to be universally applicable to situations that call for the enhancement of raw input data.
    關聯: 2019 16th IEEE International Conference on Advanced Video and Signal Based Surveillance, University of Taipei
    資料類型: conference
    DOI 連結: https://doi.org/10.1109/AVSS.2019.8909820
    DOI: 10.1109/AVSS.2019.8909820
    顯示於類別:[資訊科學系] 會議論文

    文件中的檔案:

    檔案 描述 大小格式瀏覽次數
    2.pdf382KbAdobe PDF2409檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋