English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114105/145137 (79%)
Visitors : 52202863      Online Users : 943
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/128558
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/128558


    Title: 以經驗分佈函數為基準之適合度檢定方法
    Alternative Goodness-of-Fit Tests based on Empirical Distribution
    Authors: 許晉瑋
    Hsu, Chin-Wei
    Contributors: 洪英超
    Hung, Ying-Chao
    許晉瑋
    Hsu, Chin-Wei
    Keywords: 適合度檢定
    經驗分佈函數
    卡方適合度檢定
    Anderson-Darling檢定
    Kolmogorov-Smirnov檢定
    Date: 2020
    Issue Date: 2020-02-05 17:06:58 (UTC+8)
    Abstract: 適合度檢定為一種用以判斷某母體是否服從某特定分配的假設檢定,較為常用的一些適合度檢定有卡方適合度檢定,還有以經驗分佈函數(Empirical Distribution Function; EDF)為基準之適合度檢定,此類檢定的核心概念為評估經驗分佈函數與累積分佈函數(Cumulative Distribution Function; CDF)是否靠近,並以此建構合理的檢定統計量。此類檢定最為常用的為Anderson-Darling 檢定(A-D test)以及Kolmogorov-Smirnov 檢定(K-S test),A-D test 的檢定力普遍比K-S test 強,因其對分配的尾端較為敏感,但K-S test 執行起來較為簡單,亦可廣泛地延伸至多變量分配。本文主要是根據K-S test 的概念,定義一個稱為Lp-norm 的K-S 檢定統計量來執行連續型分配的適合度檢定。此方法可運用到單一變量及多變量分配的檢定,在電腦模擬的實驗下本文也證明所提方法於某些參數設定之下有較高的檢定力。
    Reference: 1. Alodat, M.T., Al-Subh, S.A., Ibrahim K., & Jemain A.A. (2010). “Empirical
    Characteristic Function Approach to Goodness of Fit Tests for the Logistic
    Distribution under SRS and RSS”, Journal of Modern Applied Statistical Methods,
    Vol. 9, No. 2, 558-567.
    2. Bakshaev, A., & Rudzkis, R. (2015). “Multivariate goodness-of-fit tests based on
    kernel density estimators”, Nonlinear Analysis: Modelling and Control, Vol. 20, No.
    4, 585-602.
    3. Chen, W.C., Hung, Y.C., & Balakrishnan N. (2014) “Generating beta random
    numbers and Dirichlet random vectors in R: The package rBeta2009”,
    Computational Statistics and Data Analysis, 71, 1011-1020.
    4. Facchinetti, S. (2009) “A Procedure to Find Exact Critical Values of Kolmogorov-
    Smirnov test”, Statistica Applicata – Italian Journal of Applied Statistics, Vol. 21,
    No. 3-4, 337-359.
    5. Hung, Y.C., & Chen W.C. (2017). “Simulation of some multivariate distributions
    related to Dirichlet distribution with application to Monte Carlo simulations”,
    Communication in Statistics-Simulation and Computation, Vol. 46, No. 6, 4281-
    4296.
    6. Justel, A., Pena, D., & Zamar, R. (1997). “A Multivariate Kolmogorov-Smirnov
    Test of Goodness of Fit”, Statistics and Probability Letters, 35, 251-259.
    7. McAssey, M.P. (2013) “An empirical goodness-of-fit test for multivariate
    distributions’, Journal of Applied Statistics, 40:5, 1120-1131.
    8. Mirhossini, S.M., Amini M., & Dolati A. (2015) “On a general structure of bivariate
    FGM type distributions”, Application of Mathematics, Vol. 60, No. 1, 91-108.
    9. Razali , N.M., & Wah, Y.B. (2011) “Power comparisons of Shapiro-Wilk,
    Kolmogorov-Smirnov, Lillefors and Anderson-Darling tests”, Journal of Statistical
    Modeling and Analytics, Vol.2, No. 1, 21-33.
    10. R package “Emcdf” (2018). URL: https://cran.r-project.org/web/packages/Emcdf/index.html.
    11. R package “MultiRNG” (2019). URL: https://cran.r-project.org/web/packages/MultiRNG/index.html.
    12. R package “pbivnorm” (2015). URL: https://github.com/brentonk/pbivnorm.
    13. Stephens M.A. (1974). “EDF Statistics of Goodness of Fit and Some Comparisons”,
    Journal of the American Statistical Association, Vol. 69, No.347, 730-737.
    14. Vaidyanathan, V.S., & Varghese, S. (2016) “Morgenstern type bivariate Lindley
    distribution”, Statistics, Optimization and Information Computing, Vol. 4, 132-146.
    15. Yang, G.Y. (2012). “The Energy Goodness-of-Fit Test for Univariate Stable
    Distributions”.
    Description: 碩士
    國立政治大學
    統計學系
    106354017
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0106354017
    Data Type: thesis
    DOI: 10.6814/NCCU202000071
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File SizeFormat
    401701.pdf3306KbAdobe PDF2407View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback