English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113873/144892 (79%)
Visitors : 51954248      Online Users : 844
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 資訊學院 > 資訊科學系 > 學位論文 >  Item 140.119/126583
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/126583


    Title: LSTM及GRU模型用於預測市區交通流量之研究
    A Study of Traffic Flow Prediction Using LSTM and GRU
    Authors: 陳哲安
    Chen, Che-An
    Contributors: 張宏慶
    Jang, Hung-Chin
    陳哲安
    Chen, Che-An
    Keywords: 交通流量預測
    深度學習
    LSTM記憶單元
    GRU控制單元
    Traffic Flow Prediction
    Deep Learning
    LSTM
    GRU
    Date: 2019
    Issue Date: 2019-10-03 17:18:20 (UTC+8)
    Abstract: 近年來,隨著各縣市智慧城市的推廣,如何改善交通混亂的議題一直受到大眾關注。若我們能有效預測交通流量,政府單位即可事先做好相關配套措施,有效舒緩交通擁塞的問題。在傳統上大多會使用ARIMA (Autoregressive Integrated Moving Average model)方法來預測交通流量,但隨著深度學習在其他領域有著突破性的發展,LSTM (Long Short-Term Memory)和GRU (Gated recurrent units)模型已被證實對於交通流量預測有良好的效益。
    對於交通流量的資料收集,本研究將撰寫程式收集「常態性交通流量資料」與「可預期之偶發性活動資料」。關於「常態性交通流量資料」,我們將使用臺北市政府資料開放平台的「車輛偵測器(VD)資料」作為資料來源。因為市區交通的狀況較為複雜,容易受到觀光盛會、演唱會、天氣等「可預期之偶發性活動」影響,本研究採用本團隊先前的研究成果[8],透過撰寫爬蟲程式對於多個售票網站、旅遊觀光網站、中央氣象局進行資料收集。本研究將上述資料輸入至 LSTM和GRU 模型以對其進行訓練,並利用Adam Optimizer 對模型進行優化。LSTM和GRU 模型之實作,以 Google 開發之機器學習框架 TensorFlow進行。最後,我們以平均絕對誤差(Mean Absolute Error, MAE)、均方誤差(Mean Square Error, MSE)和平均絕對百分比誤差(Mean Absolute Percentage Error, MAPE)對模型之預測準確率進行評估,進而分析LSTM模型和GRU模型在市區交通流量預測之準確度及LSTM和GRU模型之效益。
    In recent years, with the promotion of smart cities in each county, the issue of how to resolve the problem of traffic chaos has drawn much attention. If we can accurately predict the traffic flow, then we can alleviate the traffic congestion more effectively. ARIMA (Autoregressive Integrated Moving Average model) were used to predict traffic flow. As the deep learning method has a breakthrough in many other fields, more and more studies propose to use deep learning models to solve real-world problems, and the results approve that both LSTM (Long Short-Term Memory) and GRU (Gated Recurrent Units) models have excellent performance in traffic flow prediction.
    The proposed method is going to use both "normal traffic flow data" and "predictable sporadic activity data." As to the "normal traffic flow data," we use the "Vehicle Detector (VD) Data" given by the Taipei City Government Information Open Platform. On the other side, the traffic is also vulnerable to predictable sporadic activities, such as citywide carnival and festival, large-scale concerts, weather, etc. At this part, we code web crawler for websites of the ticket office, tourist information, news information, Central Weather Bureau, etc. These training data is fed into the LSTM and GRU deep learning models. We then use Adam Optimizer to optimize the models. The implementations of both LSTM and GRU models are based on TensorFlow of Google. Finally, we use MAE (Mean Absolute Error) and MAPE (Mean Absolute Percentage Error) to evaluate the urban traffic flow prediction accuracy of both LSTM and GRU models.
    Reference: 1. M. S. Ahmed and A. R. Cook, “Analysis of Freeway Traffic Time-Series Data by Using Box–Jenkins Techniques,” Transp. Res. Rec., no. 722, pp. 1–9, 1979.
    2. Usman Ali and Tariq Mahmood, “Using Deep Learning to Predict Short Term Traffic Flow: A Systematic Literature Review,” Part of the Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering book series(LNICST, volume 222), Jul. 2018.
    3. Yuan-Yuan Chen, Yisheng Lv, Zhenjiang Li, and Fei-Yue Wang, “Long Short-Term Memory Model for Traffic Congestion Prediction with Online Open Data,” IEEE 19th International Conference on Intelligent Transportation System, 2016.
    4. Xunsheng Du, Huaqing Zhang, Hien Van Nguyen and Zhu Han, “Stacked LSTM Deep Learning Model for Traffic Prediction in Vehicle-to-Vehicle Communication,” 2017 IEEE 86th Vehicular Technology Conference (VTC-Fall), Toronto, ON, Canada, Sept. 24-27, 2017.
    5. Rui Fu, Zuo Zhang, Li Li, “Using LSTM and GRU Neural Network Methods for Traffic Flow Prediction,” Chinese Association of Automation(YAC), Youth Academic Annual Conference of, January 2017.
    6. Yarin Gal and Zoubin Ghahramani, “A Theoretically Grounded Application of Dropout in Recurrent Neural Networks,” arXiv preprint arXiv:1512.05297v5 2016.
    7. Hung-Chin Jang and Ting-Kuan Lin, "Traffic-Aware Traffic Signal Control Framework Based on SDN and Cloud-Fog Computing," 2018 IEEE 88th Vehicular Technology Conference (VTC 2018-Fall), Chicago, USA, Aug. 27 - 30, 2018.
    8. Hung-Chin Jang and Yu-Hsiang Chang, "Traffic Flow Forecast for Traffic with Forecastable Sporadic Events," The 12th International Conference on Ubi-Media Computing (Ubi-Media 2019), Bali, Indonesia, Aug. 6-9, 2019.
    9. A. Krizhevsky, I. Sutskever and G. E. Hinton, “ImageNet Classification with Deep Convolutional Neural Networks,” NIPS’12 Proceedings of the 25th International Conference on Neural Information Processing Systems, vol 1, pp. 1097-1105, Dec. 2012.
    10. Danqing Kang, Yisheng Lv and Yuan-Yuan Chen, “Short-term Traffic Flow Prediction with LSTM Recurrent Neural Network,” 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Mar. 2018.
    11. Diederik Kingma and Jimmy Ba, “Adam: A Method for Stochastic Optimization,” arXiv preprint arXiv:1412.6980v8, 2015.
    12. S. Lee and D. Fambro, “Application of Subset Autoregressive Integrated Moving Average Model for Short-Term Freeway Traffic Volume Forecasting,” Transport. Res. Record, 1999, 1678, pp. 179–188.
    13. Yipeng Liu, Haifeng Zheng, Xinxin Feng and Zhonghui Chen, “Short-Term Traffic Flow Prediction with Conv-LSTM,” 2017 9th International Conference on Wireless Communications and Signal Processing (WCSP), Dec. 2017.
    14. Yangdong Liu, Yizhe Wang, Xiaoguang Yang and Linan Zhang, “Short-term Travel Time Prediction by Deep Learning: A Comparison of Different LSTM-DNN Models,” 2017 IEEE 20th International Conference on Intelligent Transportation Systems (ITSC), Mar. 2018.
    15. Colin David Lewis, “Industrial and Business Forecasting Methods: A Practical Guide to Exponential Smoothing and Curve Fitting,” Published: London , Butterworth Scientific, 1982.
    16. X. Ma, Z. Tao, Y. Wang, H. Yu and Y. Wang, “Long Short-Term Memory Neural Network for Traffic Speed Prediction Using Remote Microwave Sensor Data,” Transp. Res. C, Emerg. Technol., vol. 54, pp. 187-197, May 2015.
    17. Tom Mitchell, “Machine Learning,” Boston, Mass. : McGraw-Hill, 1997.
    18. Hongxin Shao and Boon-Hee Soong, “Traffic Flow Prediction with Long Short-Term Memory Networks (LSTMs),” 2016 IEEE Region 10 Conference (TENCON), 2016.
    19. Ridha Soua, Arief Koesdwiady and Fakhri Karray, “Big-Data-Generated Traffic Flow Prediction Using Deep Learning and Dempster-Shafer Thseory,” in 2016 IEEE IJCNN, pp. 3195-3202, 2016.
    20. Y. Tian and L. Pan, “Predicting Short-Term Traffic Flow by Long Short-Term Memory Recurrent Neural Network,” in 2015 IEEE International Conference on Smart City, Chengdu, pp. 153-158, 2015.
    21. M. Van Der Voort, M. Dougherty and S. Watson, “Combining Kohonen Maps with ARIMA Time Series Models to Forecast Traffic Flow,” Transport. Res. C: Emerging Technol., 1996, 4, (5), pp. 307–318.
    22. B. M. Williams and L. A. Hoel, “Modeling and Forecasting Vehicular Traffic Flow as a Seasonal ARIMA Process: Theoretical Basis and Empirical Results,” J. Transp. Eng., vol. 129, no. 6, pp. 664–672, 2003.
    23. Da Zhang and Mansur R. Kabuba, “Combining Weather Condition Data to Predict Traffic Flow: A GRU Based Deep Learning Approach,” 2017 IEEE 15th Intl Conf on Dependable, Autonomic and Secure Computing, 15th Intl Conf on Pervasive Intelligence and Computing, 3rd Intl Conf on Big Data Intelligence and Computing and Cyber Science and Technology Congress(DASC/PiCom/DataCom/CyberSciTech), Apr. 2017.
    24. Zheng Zhao, Weihai Chen, Xingming Wu, Peter C. Y. Chen, Jingmeng Liu, “LSTM Network: A Deep Learning Approach for Short-Term Traffic Forecast,” IET Intelligent Transport Systems , vol. 11 , Issue: 2 , Mar. 2017.
    25. IBM Smart Cities, http://www-07.ibm.com/tw/dp-cs/smartercity/overview.html, retrieved date Oct. 6, 2018.
    26. Nvidia人工智慧、機器學習、深度學習, https://blogs.nvidia.com.tw/2016/07/whats-difference-artificial-intelligence-machine-learning-deep-learning-ai, retrieved Oct 6, 2018.
    27. 臺北智慧城市推動主軸, https://drive.google.com/file/d/1FZvBks9UJEh5c3SxtDRfL6Tnhqy6Lrmg/view, retrieved data Oct. 6, 2018.
    Description: 碩士
    國立政治大學
    資訊科學系
    106753014
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0106753014
    Data Type: thesis
    DOI: 10.6814/NCCU201901182
    Appears in Collections:[資訊科學系] 學位論文

    Files in This Item:

    File SizeFormat
    301401.pdf7954KbAdobe PDF22View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback