Reference: | [1] Bengio, Yoshua, Patrice Simard, and Paolo Frasconi.(1994) “Learning long-term dependencies with gradient descent is difficult.” Neural Networks, IEEE Transactions on 5.2 (1994): 157-166. [2] Cover, T.;P. Hart(1967) .“Nearest neighbor pattern classification.” in IEEE Transactions on Information Theory, vol. 13, no. 1, pp. 21-27, January 1967. doi: 10.1109/TIT.1967.1053964 [3] Cox, D.R. (1958). “The Regression Analysis of Binary Sequences.” Journal of the Royal Statistical Society: Series B, 20, 215-242. [4] Diederik, Kingma & Ba, Jimmy. (2014). Adam: A Method for Stochastic Optimization. International Conference on Learning Representations. [5] Doering , Jonathan & Fairbank, Michael & Markose, Sheri. (2017). “Convolutional neural networks applied to high-frequency market microstructure forecasting.” 31-36. 10.1109/CEEC.2017.8101595. [6] Fisher, R.A. (1936). “The Use of Multiple Measurements in Taxonomic Problems.” Annals of Eugenics, 7, 179-188. [7] Gode, D. K., & Sunder, S. (1993). Alloca;ve efficiency of markets with zero-intelligence traders: Market as a par;al subs;tute for individual ra;onality. Journal of poli;cal economy, 101(1), 119–137 [8]Hochreiter, Sepp, and Jürgen Schmidhuber(1997). “Long short-term memory.” Neural computation 9.8 (1997): 1735-1780. [9] Huang, Norden E.;Zheng Shen;Steven R. Long3(1998). “The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis” 454Proc. R. Soc. Lond. A [10] Krizhevsky, Alex & Sutskever, Ilya & E. Hinton, Geoffrey. (2012). “ImageNet Classification with Deep Convolutional Neural Networks.” Neural Information Processing Systems. 25. 10.1145/3065386. [11] Le, Quoc V. Navdeep Jaitly, Geoffrey E. Hinton(2015). “A Simple Way to Initialize Recurrent Networks of Rectified Linear Units”.arXiv:1504.00941v2 [cs.NE] 7 Apr 2015 [12] Li, Edwin (2018). “LSTM Neural Network Models for Market Movement Prediction” (Dissertation). Retrieved from http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-231627 [13] Lipton, Zachary C. John Berkowitz, Charles Elkan(2015). “A Critical Review of Recurrent Neural Networks for Sequence Learning.” arXiv:1506.00019v4 [cs.LG] 17 Oct 2015 [14] Loffe, Sergey. Christian Szegedy(2015). “Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift.” arXiv:1502.03167v3 [cs.LG] 2 Mar 2015 [15] McCulloch, Warren S.;Walter Pitts(1943). “A logical calculus of the ideas immanent in nervous activity.” Bulletin of Mathematical Biology, 52, 99-115. [16] Navon, Ariel Yosi Keller(Nov 2017). “Financial Time Series Prediction using Deep Learning.” arXiv:1711.04174v1 [eess.SP] 11 Nov 2017 [17]Rosenblatt, F(1958). “The perceptron: A probabilistic model for information storage and organization in the brain.” _Psychological Review_ 65 (6):386-408. [18] Rumelhart, David E Geoffrey E. Hinton, Ronald J. Williams(1986). “Learning representations by back-propagating errors” . Nature. 323 (6088): 533–536. doi:10.1038/323533a0. ISSN 1476-4687. [19] SUBHA, M.V & Nambi, S.T.. (2012). “Classification of stock index movement using k-nearest neighbours (k-NN) algorithm.” WSEAS Transactions on Information Science and Applications. 9. 261-270. [20] Srivastava, Nitish, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, Ruslan Salakhutdinov(2014). “Dropout: A Simple Way to Prevent Neural Networks from Overfitting” Journal of Machine Learning Research 15 (2014) 1929-1958 Submitted 11/13; Published 6/14 [21] Teixeira, LA & Oliveira, A.L. (2010). “A method for automatic stock trading combining technical analysis and nearest neighbor classification.” Expert Syst. Appl., 37, 6885-6890. [22]Williams, R. J. (1989). "Complexity of exact gradient computation algorithms for recurrent neural networks. Technical Report Technical Report NU-CCS-89-27". Boston: Northeastern University, College of Computer Science. [23]Zhang, Boning. (2018). Foreign exchange rates forecasting with an EMD-LSTM neural networks model. Journal of Physics: Conference Series. 1053. 012005. 10.1088/1742-6596/1053/1/012005. [24] Zheng, Huiting & Yuan, Jiabin & Chen, Long. (2017). “Short-Term Load Forecasting Using EMD-LSTM Neural Networks with a Xgboost Algorithm for Feature Importance Evaluation.” Energies. 10. 1168. 10.3390/en10081168. |