政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/125779
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113318/144297 (79%)
造访人次 : 51007106      在线人数 : 903
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/125779


    题名: 多時相干涉雷達監測建物變形及評估驅動因素—以臺北市為例
    Observing Building Deformation and Assessing Driving Factors Based on Multi-Temporal SAR Interferometry: A Case Study in Taipei City
    作者: 藍振維
    Lan, Chen-Wei
    贡献者: 林士淵
    Lin, Shih-Yuan
    藍振維
    Lan, Chen-Wei
    关键词: 建物變形
    合成孔徑雷達
    永久散射體合成孔徑雷達差分干涉
    邏輯斯迴歸
    Building deformation
    Synthetic Aperture Radar
    PS-InSAR
    Logistic Regression
    日期: 2019
    上传时间: 2019-09-05 17:00:16 (UTC+8)
    摘要: 為了城市中人民生命及財產的安全,實施例行性及長期的建物及基礎設施的健康監測是一項基本的任務。考慮到合成孔徑雷達(Synthetic Aperture Radar, SAR)影像具有大範圍空間及時間涵蓋的特性,本研究提出使用臺北市的時間序列SAR影像來觀測建物形變。
    本研究利用長時間序列之高解析度COSMO-SkyMed影像,並使用永久散射體合成孔徑雷達差分干涉(PS-InSAR)技術偵測地表建物變形,得到2011年五月至2013年七月之臺北市內大範圍變形成果。為得知建物變形與週遭環境因素的關係,本研究搜集人為及自然環境因素,使用邏輯斯迴歸(Logistic Regression)來了解環境因子與地表變形之關係。經迴歸模型成果指出,人為因素(如施工捷運路線、高架道路、新建工地)及自然環境因素(土壤液化潛勢)會增加建物下沉的機率。
    To secure life and property in cities, regular and long-term monitoring of health status of building and infrastructure is a basic task. Considering the wide spatial and temporal coverage of spaceborne Synthetic Aperture Radar (SAR) data, we proposed to collect time-series SAR image data over Taipei City to observe building displacement. For which, ultra-high spatial resolution X-band COSMO-SkyMed acquired from 2011/05 to 2013/07 was used. A PS-InSAR technique was then conducted to obtain the displacement in Taipei City. After the results were verified, we then tried to realize the relationship between the subsidence deformation and environment. To this end, we collected man-made environmental and natural factors and applied a Logistic Regression to analyze their interactions with building displacements. It was revealed that man-made factor (such as MRT routes, sites under construction, elevated road and construction sites) and natural factors (soil liquefaction) may have greater chance to effect subsidence phenomenon.
    參考文獻: 中文參考文獻
    吳姵瑾,2017。以持久性散射體雷達干涉分析抽取地下水引起之地表變形──以臺北盆地捷運工程為例。國立臺灣大學地質科學研究所碩士論文:臺北市。
    周鋒泯,2009。應用永久散射體差分干涉法觀測台灣北部地區之地表變形。國立中央大學地球物理研究所碩士論文:桃園縣。
    張喭汝,2015。利用持久散射體差分干涉法研究臺北盆地地下水升降引起的地表變形。國立臺灣大學地質科學研究所碩士論文:臺北市。
    李嶸泰、張嘉琪、詹勳全、廖珮妤、洪雨柔,2012。 應用羅吉斯迴歸法進行阿里山地區山崩潛勢評估。中華水土保持學報,43(2),頁 167-176。
    林銘軒,2012。臺北盆地水文地質架構及地層下陷之探討。臺灣大學臺灣大學地質科學研究所碩士論文:臺北市。
    王怡方,2013。利用永久散射體差分干涉法監測臺北盆地與山腳斷層之地表變形研究。中國文化大學地學研究所地質組碩士論文:臺北市。
    王淳璟,2015。結合衛星雷達與GPS觀測資料分析北台灣地表變形。國立中央大學地球科學學系碩士論文:桃園縣。
    范凱婷,2012。臺北盆地及周圍山區之現今地表變形研究。國立中央大學地球物理研究所碩士論文:桃園縣。
    謝嘉聲,2006。以雷達干涉技術偵測地表變形之研究。博士論文-- 國立交通大學土木工程系所國立交通大學土木工程系博士論文。
    鄧屬予,2006。 臺北盆地之地質研究。西太平洋地質科學,6,頁 1-28。
    闕河淵、黃南輝、郭金源,1997。 臺北盆地地下水位分佈與施工降水影響之探討。地工技術(63),頁 23-32。

    外文參考文獻
    Abidin, H. Z., Andreas, H., Gumilar, I., Fukuda, Y., Pohan, Y. E., & Deguchi, T., 2011, “Land subsidence of Jakarta (Indonesia) and its relation with urban development”, Natural Hazards, 59(3): 1753.
    Achmad, A., Hasyim, S., Dahlan, B., & Aulia, D. N., 2015, “Modeling of urban growth in tsunami-prone city using logistic regression: Analysis of Banda Aceh, Indonesia”, Applied geography, 62 237-246.
    Al-Juaidi, A. E., Nassar, A. M., & Al-Juaidi, O. E., 2018, “Evaluation of flood susceptibility mapping using logistic regression and GIS conditioning factors”, Arabian Journal of Geosciences, 11(24): 765.
    Bai, S.-B., Wang, J., Lü, G.-N., Zhou, P.-G., Hou, S.-S., & Xu, S.-N., 2010, “GIS-based logistic regression for landslide susceptibility mapping of the Zhongxian segment in the Three Gorges area, China”, Geomorphology, 115(1-2): 23-31.
    Berardino, P., Fornaro, G., Lanari, R., & Sansosti, E., 2002, “A new algorithm for surface deformation monitoring based on small baseline differential SAR interferograms”, IEEE Transactions on Geoscience and Remote Sensing, 40(11): 2375-2383.
    Bianchini, S., Pratesi, F., Nolesini, T., & Casagli, N., 2015, “Building Deformation Assessment by Means of Persistent Scatterer Interferometry Analysis on a Landslide-Affected Area: The Volterra (Italy) Case Study”, Remote Sensing, 7(4).
    Casagli, N., Catani, F., Del Ventisette, C., & Luzi, G. J. L., 2010, “Monitoring, prediction, and early warning using ground-based radar interferometry”, 7(3): 291-301.
    Chen, W., Li, H., Hou, E., Wang, S., Wang, G., Panahi, M., . . . Niu, C., 2018, “GIS-based groundwater potential analysis using novel ensemble weights-of-evidence with logistic regression and functional tree models”, Science of the Total Environment, 634 853-867.
    Chen, W., Xie, X., Peng, J., Wang, J., Duan, Z., & Hong, H., 2017, “GIS-based landslide susceptibility modelling: a comparative assessment of kernel logistic regression, Naïve-Bayes tree, and alternating decision tree models”, Geomatics, Natural Hazards and Risk, 8(2): 950-973.
    Cheney, J. E. (1974). TECHNIQUES AND EQUIPMENT USING THE SURVEYORS LEVEL FOR ACCURATE MEASUREMENT OF BUILDING MOVEMENT. In Field Instrumentation in Geotechnical Engineering (pp. 85-99): Butterworth-Heinemann.
    Ciang, C. C., Lee, J.-R., & Bang, H.-J., 2008, “Structural health monitoring for a wind turbine system: a review of damage detection methods”, Measurement Science and Technology, 19(12): 122001.
    Corsetti, M., Fossati, F., Manunta, M., & Marsella, M., 2018, “Advanced SBAS-DInSAR Technique for Controlling Large Civil Infrastructures: An Application to the Genzano di Lucania Dam”, 18(7): 2371.
    Crosetto, M., Monserrat, O., Cuevas-González, M., Devanthéry, N., & Crippa, B., 2016, “Persistent Scatterer Interferometry: A review”, ISPRS Journal of Photogrammetry and Remote Sensing, 115 78-89.
    Danklmayer, A., Doring, B. J., Schwerdt, M., Chandra, M. J. I. T. o. G., & Sensing, R., 2009, “Assessment of atmospheric propagation effects in SAR images”, IEEE Transactions on Geoscience and Remote Sensing, 47(10): 3507-3518.
    De Graff, J., & Romesburg, H. C., 1981, “Subsidence crack closure: rate, magnitude, and sequence”, Bulletin of the International Association of Engineering Geology-Bulletin de l`Association Internationale de Géologie de l`Ingénieur, 23(1): 123-127.
    de Lacy, M. C., Ramos, M. I., Gil, A. J., Franco, Ó. D., Herrera, A. M., Avilés, M., . . . Chica, J. C., 2017, “Monitoring of vertical deformations by means high-precision geodetic levelling. Test case: The Arenoso dam (South of Spain)”, Journal of Applied Geodesy, 11(1): 31-41.
    Doin, M.-P., Lodge, F., Guillaso, S., Jolivet, R., Lasserre, C., Ducret, G., . . . Pinel, V., 2011, “ation of the small baseline NSBAS processing chain on a case example: The Etna deformation monitoring from 2003 to 2010 using Envisat data”, Paper ed at the In Proceedings of the ESA FRINGE Conference, Frascati, Italy, 19–23 September 2011
    Farrar, C. R., & Worden, K., 2007, “An Introduction to Structural Health Monitoring”, Philosophical Transactions: Mathematical, Physical and Engineering Sciences, 365(1851): 303-315.
    Ferretti, A., Prati, C., & Rocca, F., 2000, “Nonlinear subsidence rate estimation using permanent scatterers in differential SAR interferometry”, IEEE Transactions on Geoscience and Remote Sensing, 38(5): 2202-2212.
    Ferretti, A., Prati, C., & Rocca, F., 2001, “Permanent scatterers in SAR interferometry”, IEEE Transactions on Geoscience and Remote Sensing, 39(1): 8-20.
    Fraser, C., Shao, J. J. I. A. o. P., & Sensing, R., 1996, “Exterior orientation determination of MOMS-02 three-line imagery: experiences with the Australian testfield data”, International Archives of Photogrammetry and Remote Sensing, 31 207-214.
    Gabriel, A. K., & Goldstein, R. M., 1988, “Crossed orbit interferometry: theory and experimental results from SIR-B”, International Journal of Remote Sensing, 9(5): 857-872.
    Gattulli, V., Lepidi, M., & Potenza, F., 2016, “Dynamic testing and health monitoring of historic and modern civil structures in Italy”, Structural Monitoring and Maintenance, 3(1): 71-90.
    Gens, R., & VAN GENDEREN, J. L., 1996, “Review Article SAR interferometry—issues, techniques, applications”, International Journal of Remote Sensing, 17(10): 1803-1835.
    Goel, K., Adam, N., & Minet, C., 2011, “Long term analysis of strong non-linear deformations induced by coal mining using the SBAS technique”, Paper ed at the ESA Fringe Symp, 19–23 September 2011
    Gordon Stuart, J., & Lichti Derek, D., 2007, “Modeling Terrestrial Laser Scanner Data for Precise Structural Deformation Measurement”, Journal of Surveying Engineering, 133(2): 72-80.
    Greif, V., & Vlcko, J., 2011, “Monitoring of post-failure landslide deformation by the PS-InSAR technique at Lubietova in Central Slovakia”, Environmental Earth Sciences, 66(6): 1585-1595.
    Haack, A., 2010, “Construction of the north-south-metro line in Cologne and the accident on March 3rd, 2009”.
    Haala, N. (2013). The landscape of dense image matching algorithms.
    Hofmann-Wellenhof, B., Lichtenegger, H., & Wasle, E. (2007). GNSS–global navigation satellite systems: GPS, GLONASS, Galileo, and more: Springer Science & Business Media.
    Holzer, T. L., & Johnson, A. I., 1985, “Land subsidence caused by ground water withdrawal in urban areas”, GeoJournal, 11(3): 245-255.
    Hong, J.-H., Chiew, Y.-M., Lu, J.-Y., Lai, J.-S., & Lin, Y.-B., 2011, “Houfeng bridge failure in Taiwan”, Journal of Hydraulic Engineering, 138(2): 186-198.
    Hooper, A., Zebker, H., Segall, P., & Kampes, B., 2004, “A new method for measuring deformation on volcanoes and other natural terrains using InSAR persistent scatterers”, Geophysical Research Letters, 31(23).
    Hoult, N., Bennett, P. J., Stoianov, I., Fidler, P., Maksimović, Č., Middleton, C., . . . Soga, K., 2009, “Wireless sensor networks: creating ‘smart infrastructure’”, Proceedings of the Institution of Civil Engineers-Civil Engineering, 162(3):136-143
    Hu, R. L., Yue, Z. Q., Wang, L. C., & Wang, S. J., 2004, “Review on current status and challenging issues of land subsidence in China”, Engineering Geology, 76(1): 65-77.
    Hua, L. J., Mohd, S., Tajudin, S. A. A., Mohamad, S. N. A., Bakar, I., Masirin, M. I. M., . . . Mahmood, A. A.-W., 2016, “Construction of infrastructure on peat: Case studies and lessons learned”, MATEC Web of Conferences, 47: 03014
    Huang, Q., Crosetto, M., Monserrat, O., & Crippa, B., 2017, “Displacement monitoring and modelling of a high-speed railway bridge using C-band Sentinel-1 data”, ISPRS Journal of Photogrammetry and Remote Sensing, 128(Supplement C): 204-211.
    Jolivet, R., Lasserre, C., Doin, M. P., Guillaso, S., Peltzer, G., Dailu, R., . . . Xu, X., 2012, “Shallow creep on the Haiyuan Fault (Gansu, China) revealed by SAR Interferometry”, Journal of Geophysical Research: Solid Earth, 117(B6).
    Karila, K., Karjalainen, M., Hyyppä, J., Koskinen, J., Saaranen, V., & Rouhiainen, P., 2013, “A Comparison of Precise Leveling and Persistent Scatterer SAR Interferometry for Building Subsidence Rate Measurement”, ISPRS International Journal of Geo-Information, 2(3).
    Kim, S., Pakzad, S., Culler, D., Demmel, J., Fenves, G., Glaser, S., & Turon, M., 2007, “Health monitoring of civil infrastructures using wireless sensor networks”, Proceedings of the 6th international conference on Information processing in sensor networks, 254-263
    Kiseleva, Е., Mikhailov, V., Smolyaninova, E., Dmitriev, P., Golubev, V., Timoshkina, E., . . . Hanssen, R., 2014, “PS-InSAR Monitoring of Landslide Activity in the Black Sea Coast of the Caucasus”, Procedia Technology, 16 404-413.
    Kleinbaum, D. G. (2010). Logistic regression a self-learning text (3rd ed. ed.). New York, NY: Springer Science+Business Media, LLC.
    Knecht, A., & Manetti, L., 2001, “Using GPS in structural health monitoring”, Smart Structures and Materials 2001: Sensory Phenomena and Measurement Instrumentation for Smart Structures and Materials, 4328: 122-129
    Lanari, R., Casu, F., Manzo, M., Zeni, G., Berardino, P., Manunta, M., & Pepe, A., 2007, “An Overview of the Small BAseline Subset Algorithm: a DInSAR Technique for Surface Deformation Analysis”, Pure and Applied Geophysics, 164(4): 637-661.
    Lazecký, M., Perissin, D., Zhiying, W., Ling, L., & Yuxiao, Q. (2015). Observing Dam’s Movements with Spaceborne SAR Interferometry. In G. Lollino, A. Manconi, F. Guzzetti, M. Culshaw, P. Bobrowsky, & F. Luino (Eds.), Engineering Geology for Society and Territory - Volume 5: Urban Geology, Sustainable Planning and Landscape Exploitation (pp. 131-136). Cham: Springer International Publishing.
    Li, H.-N., Li, D.-S., & Song, G.-B., 2004, “Recent applications of fiber optic sensors to health monitoring in civil engineering”, Engineering Structures, 26(11): 1647-1657.
    Li, Q., Zhi, L.-H., Tuan, A. Y., Kao, C.-S., Su, S.-C., & Wu, C.-F., 2010, “Dynamic behavior of Taipei 101 Tower: field measurement and numerical analysis”, Journal of Structural Engineering, 137(1): 143-155.
    Lin, H., & Ma, P., 2017, “Urban infrastructural health diagnosis with satellite-terrestrial sensing technologies”, Annals of GIS, 23(2): 71-78.
    Lindenbergh, R., & Pietrzyk, P., 2015, “Change detection and deformation analysis using static and mobile laser scanning”, Applied Geomatics, 7(2): 65-74.
    López-Quiroz, P., Doin, M.-P., Tupin, F., Briole, P., & Nicolas, J.-M., 2009, “Time series analysis of Mexico City subsidence constrained by radar interferometry”, Journal of Applied Geophysics, 69(1): 1-15.
    Luhmann, T., Robson, S., Kyle, S., & Boehm, J. (2013). Close-range photogrammetry and 3D imaging: Walter de Gruyter.
    Mills, J., & Barber, D., 2004, “Geomatics techniques for structural surveying”, Journal of Surveying Engineering, 130(2): 56-64.
    Modares, M., & Waksmanski, N., 2013, “Overview of Structural Health Monitoring for Steel Bridges”, Practice Periodical on Structural Design and Construction, 18(3): 187-191.
    Moore, J. F. A., & Ping, B. J. R. (1992). Surveying. In J. F. A. Moore (Ed.), Monitoring Building Structures (pp. 8-31). Boston, MA: Springer US.
    Mora, O., Mallorqui, J. J., & Broquetas, A., 2003, “Linear and nonlinear terrain deformation maps from a reduced set of interferometric sar images”, IEEE Transactions on Geoscience and Remote Sensing, 41(10): 2243-2253.
    Moreno-Gomez, A., Perez-Ramirez, C. A., Dominguez-Gonzalez, A., Valtierra-Rodriguez, M., Chavez-Alegria, O., & Amezquita-Sanchez, J. P., 2018, “Sensors Used in Structural Health Monitoring”, Archives of Computational Methods in Engineering, 25(4): 901-918.
    Mukupa, W., Roberts, G. W., Hancock, C. M., & Al-Manasir, K., 2017, “A review of the use of terrestrial laser scanning application for change detection and deformation monitoring of structures”, Survey Review, 49(353): 99-116.
    Oh, H.-J., & Lee, S., 2011, “Integration of ground subsidence hazard maps of abandoned coal mines in Samcheok, Korea”, International Journal of Coal Geology, 86(1): 58-72.
    Park, H. S., Lee, H. M., Adeli, H., & Lee, I., 2007, “A New Approach for Health Monitoring of Structures: Terrestrial Laser Scanning”, Computer‐Aided Civil and Infrastructure Engineering, 22(1): 19-30.
    Peltier, A., Bianchi, M., Kaminski, E., Komorowski, J. C., Rucci, A., & Staudacher, T., 2010, “PSInSAR as a new tool to monitor pre-eruptive volcano ground deformation: Validation using GPS measurements on Piton de la Fournaise”, Geophysical Research Letters, 37(12).
    Perissin, D., & Rocca, F., 2006, “High-Accuracy Urban DEM Using Permanent Scatterers”, IEEE Transactions on Geoscience and Remote Sensing, 44(11): 3338-3347.
    Perissin, D., & Wang, T., 2011, “Time-series InSAR applications over urban areas in China”, IEEE Journal of Selected Topics in Applied Earth Observations
    Remote Sensing, 4(1): 92-100.
    Perissin, D., Wang, Z., & Lin, H., 2012, “Shanghai subway tunnels and highways monitoring through Cosmo-SkyMed Persistent Scatterers”, ISPRS Journal of Photogrammetry and Remote Sensing, 73(Supplement C): 58-67.
    Perissin, D., Wang, Z., & Wang, T., 2011, “The SARPROZ InSAR tool for urban subsidence/manmade structure stability monitoring in China”, Paper ed at the Proceedings of the ISRSE, Sidney, Australia, October 1
    Pieraccini, M., 2013, “Monitoring of civil infrastructures by interferometric radar: A review”, The Scientific World Journal, 2013.
    Pradhan, B., 2010, “Flood susceptible mapping and risk area delineation using logistic regression, GIS and remote sensing”, Journal of Spatial Hydrology, 9(2).
    Psimoulis Panos, A., & Stiros Stathis, C., 2013, “Measuring Deflections of a Short-Span Railway Bridge Using a Robotic Total Station”, Journal of Bridge Engineering, 18(2): 182-185.
    Pu, S., & Vosselman, G., 2009, “Knowledge based reconstruction of building models from terrestrial laser scanning data”, ISPRS Journal of Photogrammetry and Remote Sensing, 64(6): 575-584.
    Pytharouli, S. I., & Stiros, S. C. J. J. o. A. G., 2009, “Investigation of the parameters controlling the crest settlement of a major earthfill dam based on the threshold correlation analysis”, 3(1): 55-62.
    Remondino, F., El-Hakim, S. F., Gruen, A., & Zhang, L., 2008, “Turning images into 3-D models”, IEEE Signal Processing Magazine, 25(4): 55-65.
    Rödelsperger, S. (2011). Real-time Processing of Ground Based Synthetic Aperture Radar (GB-SAR) Measurements: Techn. Univ., Geodätisches Inst.
    Rosen, P. A., Hensley, S., Joughin, I. R., Li, F. K., Madsen, S. N., Rodriguez, E., & Goldstein, R. M., 2000, “Synthetic aperture radar interferometry”, Proceedings of the IEEE, 88(3): 333-382.
    Rutledge, D. R., Meyerholtz, S. Z., Brown, N. E., & Baldwin, C. S. J. G. W., 2006, “INNOVATION-Dam Stability-Assessing the Performance of a GPS Monitoring System-A precise and modernized monitoring program is an important component of the US Army Corps of Engineers`”, 17(10): 26-33.
    Sankarasrinivasan, S., Balasubramanian, E., Karthik, K., Chandrasekar, U., & Gupta, R., 2015, “Health Monitoring of Civil Structures with Integrated UAV and Image Processing System”, Procedia Computer Science, 54 508-515.
    Sansosti, E., Berardino, P., Bonano, M., Calò, F., Castaldo, R., Casu, F., . . . Lanari, R., 2014, “How second generation SAR systems are impacting the analysis of ground deformation”, International Journal of Applied Earth Observation and Geoinformation, 28 1-11.
    Savvaidis, P., Ifadis, I., Lakakis, K., & Chalimourdas, S., 2005, “Use of Robotic Total Stations for Landslide Monitoring”, Paper ed at the International Symposium “Modern Technologies, Education and Professional Practice in Geodesy and Related Fields”, Sofia, Bulgaria, June 6-July 11
    Scaioni, M., Feng, T., Barazzetti, L., Previtali, M., & Roncella, R., 2015, “Image-based deformation measurement”, Applied Geomatics, 7(2): 75-90.
    Schaber, G. G., & Breed, C. S., 1999, “The Importance of SAR Wavelength in Penetrating Blow Sand in Northern Arizona”, Remote Sensing of Environment, 69(2): 87-104.
    Serrano-Juan, A., Vázquez-Suñè, E., Monserrat, O., Crosetto, M., Hoffmann, C., Ledesma, A., . . . Alcaraz, M., 2016, “Gb-SAR interferometry displacement measurements during dewatering in construction works. Case of La Sagrera railway station in Barcelona, Spain”, Engineering Geology, 205 104-115.
    Sohn, H., 2007, “Effects of environmental and operational variability on structural health monitoring”, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 365(1851): 539.
    Sousa, J. J., Ruiz, A. M., Bakoň, M., Lazecky, M., Hlaváčová, I., Patrício, G., . . . Perissin, D., 2016, “Potential of C-Band SAR Interferometry for Dam Monitoring”, Procedia Computer Science, 100 1103-1114.
    Sowter, A., Bin Che Amat, M., Cigna, F., Marsh, S., Athab, A., & Alshammari, L., 2016, “Mexico City land subsidence in 2014–2015 with Sentinel-1 IW TOPS: Results using the Intermittent SBAS (ISBAS) technique”, International Journal of Applied Earth Observation and Geoinformation, 52 230-242.
    Süzen, M. L., & Doyuran, V., 2004, “A comparison of the GIS based landslide susceptibility assessment methods: multivariate versus bivariate”, Environmental Geology, 45(5): 665-679.
    Sužiedelytė-Visockienė, J., Bagdžiūnaitė, R., Malys, N., Maliene, V. J. E. e., & journal, m., 2015, “Close-range photogrammetry enables documentation of environment-induced deformation of architectural heritage”, 14(6): 1371-1381.
    Tapete, D., Casagli, N., Fanti, R., Del Ventisette, C., Cecchi, R., & Petrangeli, P., 2011, “Satellite and ground-based radar interferometry for detection and monitoring of structural instability in archaeological sites”, Geophysical research abstracts, 13
    Tarchi, D., Casagli, N., Fanti, R., Leva, D. D., Luzi, G., Pasuto, A., . . . Silvano, S., 2003, “Landslide monitoring by using ground-based SAR interferometry: an example of application to the Tessina landslide in Italy”, Engineering Geology, 68(1): 15-30.
    Tarchi, D., Rudolf, H., Luzi, G., Chiarantini, L., Coppo, P., & Sieber, A. J., 1999, “SAR interferometry for structural changes detection: a demonstration test on a dam”, Paper presented at the IEEE 1999 International Geoscience and Remote Sensing Symposium. IGARSS`99 (Cat. No.99CH36293), 28 June-2 July 1999
    Tien Bui, D., Shahabi, H., Shirzadi, A., Chapi, K., Pradhan, B., Chen, W., . . . Saro, L., 2018, “Land subsidence susceptibility mapping in south korea using machine learning algorithms”, Sensors, 18(8): 2464.
    Valença, J., Júlio, E. N. B. S., & Araújo, H. J., 2012, “Applications of photogrammetry to structural assessment”, Experimental Techniques, 36(5): 71-81.
    Van Zyl, J. J., 2001, “The Shuttle Radar Topography Mission (SRTM): a breakthrough in remote sensing of topography”, Acta Astronautica, 48(5-12): 559-565.
    Wagner, A. J. M., 2016, “A new approach for geo-monitoring using modern total stations and RGB+ D images”, Measurement, 82 64-74.
    Webb, G. T., Vardanega, P. J., & Middleton, C. R., 2015, “Categories of SHM Deployments: Technologies and Capabilities”, Journal of Bridge Engineering, 20(11): 04014118.
    Wrona, M., Nykiel, G., Figurski, M., & Szołucha, M., 2014, “Multi-GNSS measurement system for Structural Health Monitoring applications”, Environmental Engineering. Proceedings of the International Conference on Environmental Engineering. ICEE, 9:1
    Xu, Y.-S., Ma, L., Du, Y.-J., & Shen, S.-L., 2012, “Analysis of urbanisation-induced land subsidence in Shanghai”, Natural Hazards, 63(2): 1255-1267.
    Ye, X. W., Dong, C. Z., & Liu, T., 2016, “A Review of Machine Vision-Based Structural Health Monitoring: Methodologies and Applications %J Journal of Sensors”, 2016 10.
    Yi, T.-H., Li, H.-N., & Gu, M., 2013, “Recent research and applications of GPS-based monitoring technology for high-rise structures”, Structural Control and Health Monitoring, 20(5): 649-670.
    Yoder, N. C., & Adams, D. E. (2014). Commonly used sensors for civil infrastructures and their associated algorithms. In Sensor Technologies for Civil Infrastructures (pp. 57-85).
    Zhang, Y., Erbertseder, T., Chrysoulakis, N., Heldens, W., Infante, D., Russo, G., . . . Tessitore, S. (2017). Multitemporal synthetic aperture radar for bridges monitoring. Paper ed at the Remote Sensing Technologies and Applications in Urban Environments II.
    Zhao, C., Lu, Z., Zhang, Q., & de la Fuente, J., 2012, “Large-area landslide detection and monitoring with ALOS/PALSAR imagery data over Northern California and Southern Oregon, USA”, Remote Sensing of Environment, 124 348-359.
    Zhou, L., Guo, J., Hu, J., Li, J., Xu, Y., Pan, Y., & Shi, M., 2017, “Wuhan Surface Subsidence Analysis in 2015–2016 Based on Sentinel-1A Data by SBAS-InSAR”, Remote Sensing, 9(10).
    Zhou, W., Chen, F., & Guo, H., 2015, “Differential Radar Interferometry for Structural and Ground Deformation Monitoring: A New Tool for the Conservation and Sustainability of Cultural Heritage Sites”, Sustainability, 7(2).
    網頁參考文獻
    內政部不動產交易平台,2018a。 105年第2季台灣房屋稅籍住宅類數量依屋齡區分。http://pip.moi.gov.tw/V2/A/SCRA0101.aspx,取用日期:2018年12月5日
    內政部不動產交易平台,2018b。107年第2季臺北市房屋稅籍住宅類數量依屋齡區分。http://pip.moi.gov.tw/V2/A/SCRA0101.aspx,取用日期:2018年12月5日
    國家災害防救科技中心,2016。土壤液化區圖。https://dmap.ncdr.nat.gov.tw/Data/,取用日期:2019年4月2日
    經濟部水利署,2018a。 2010-2012年臺北市累積下陷等高線圖。https://landsubsidence.wra.gov.tw/water/PageLevel#tabs6,取用日期:2018年12月5日
    經濟部水利署,2018b。2013-2014年臺北盆地水準點下陷圖。https://landsubsidence.wra.gov.tw/water/PageLevel#tabs6,取用日期:2018年12月5日
    Perissin, D. (2014). Building Collapse. Retrieved December 5, 2018 from https://www.SARPROZ.com/building-collapse/
    Perissin, D. (2016). SARPROZ software manual. Retrieved December 5, 2018 from http://ihome.cuhk.edu.hk/~ b122066/manual/index.html
    Service, F. O. (2019). Buildings Insurance: Subsidence. Retrieved December 5, 2018 from https://www.financialombudsman.org.uk/publications/technical_notes/building-subsidence.html
    描述: 碩士
    國立政治大學
    地政學系
    106257030
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0106257030
    数据类型: thesis
    DOI: 10.6814/NCCU201900719
    显示于类别:[地政學系] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    703001.pdf9315KbAdobe PDF212检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈