政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/125636
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113648/144635 (79%)
造訪人次 : 51607566      線上人數 : 820
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/125636
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/125636


    題名: 向右之具長域Domany-Kinzel模型的漸進行為
    Asymptotic behavior for a long-range Domany-Kinzel model with right direction
    作者: 林芳誼
    Lin, Fang-Yi
    貢獻者: 陳隆奇
    Chen, Lung-Chi
    林芳誼
    Lin, Fang-Yi
    關鍵詞: Domany-Kinzel模型
    定向滲流
    隨機漫步
    漸進行為
    臨界值行為
    Berry-Esseen定理
    大離差定理
    Domany-Kinzel model
    Directed percolation
    Random walk
    Asymptotic behavior
    Critical behavior
    Berry-Esseen theorem
    Large deviation
    日期: 2019
    上傳時間: 2019-09-05 16:13:36 (UTC+8)
    摘要: 在本篇文章中,我們介紹一種向右之具長域的Domany-Kinzel 模型,其
    模型定義在二維方格座標上,假設n為一個非負整數,每個座標點(a, b) 都擁有具機率一的向右有向鏈結,並擁有n + 1 個分別具有p_k ∈ (0, 1)機率的從(a, b)到(a+k, b+1)之有向鏈結,其中a, b ∈ Z+ 且k = 0, 1, · · · , n。假設τ_n(N,M) 為從(0, 0) 到(N,M) 至少有一個由被滲透的邊組成之連通的有向路徑之機率,定義長寬比以α = N/M 表示,我們求得臨界值α_{n,c} ∈ R+ 使得當α = α_{n,c} 時在M趨近於無限下τ_n(N,M)趨近於1/2,並對其收斂速率進行研討。進而我們研究對n 趨近於無限時模型的表現,在m 為非負整數且p_m ∈ [0, 1) 的前提下,特別聚焦於p_m ≈m→∞ p/m^s其中p ∈ (0, 1)、s > 1,以及p_m=(e^(-λ)λ^m)/m!,這兩種假設情況進行討論,我們發現當s和λ的值符合前述情境時,lim_{n→∞} τ_n(N,M) 的極值表現與先前n為非負整數時的結果相似,並且在n趨近於無限的模型中,lim_{n→∞} τ_n(N,M) 的極值表現受α逼近α_{n,c} 的速度影響甚劇。
    In this thesis, we introduce a certain type of Domany-Kinzel model which may be regarded as a long-range model with right direction in two-dimension rectangular lattices. For a fixed non-negative integer n, every site (a, b) possesses not only a directed bond from site (a, b) to (a + 1, b) with probability one but also n + 1 directed bonds from (a, b) to (a + k, b + 1) with respectively probabilities p_k ∈ (0, 1), ∀a, b ∈ Z+, k = 0, 1 · · · n. Let τ_n(N,M) be the probability that there
    is at least one connected-directed path of occupied edges from (0, 0) to (N,M) and let α be the aspect ratio which means α = N/M. We conclude that τ_n(N,M) converges to 1, 0, and 1/2 as M → ∞ for α > α_{n,c}, α < α_{n,c}, and α = α_{n,c}, respectively, where α_{n,c} ∈ R+ is the critical value. The rate of convergence is discussed, too. Moreover, we study the cases that n tends to infinity. Specifically, for p_m ∈ [0, 1) with m ∈ Z+, we discuss the two cases in detail which are p_m ≈m→∞ p/m^s with p ∈ (0, 1), s > 1 and p_m=(e^(-λ)λ^m)/m! with λ > 0. We discover that the behavior of lim_{n→∞} τ_n(N,M) is similar to the case that n is a non-negative integer when s and λ fit the definition. Moreover, the speed of α approaching to the critical apect ratio highly influences the behavior of lim_{n→∞} τ_n(N,M).
    參考文獻: [1] B. Bollobas and O. Riordan. Percolation. Cambridge University Press, 2006.
    [2] Simon R Broadbent and John M Hammersley. Percolation processes: I. crystals and mazes. In Mathematical Proceedings of the Cambridge Philosophical Society, volume 53, pages629–641. Cambridge University Press, 1957.
    [3] Shu-Chiuan Chang and Lung-Chi Chen. Asymptotic behavior for a version of directed percolation on the triangular lattice. Journal of Statistical Physics, 155(3):500–522, May 2014.
    [4] Shu-Chiuan Chang and Lung-Chi Chen. Asymptotic behavior for a version of directed percolation on the honeycomb lattice. Physica A: Statistical Mechanics and its Applications, 436:547 – 557, 2015.
    [5] Shu-Chiuan Chang and Lung-Chi Chen. Asymptotic behavior for a long-range domany–kinzel model. Physica A: Statistical Mechanics and its Applications, 506:112 – 127, 2018.
    [6] Shu-Chiuan Chang, Lung-Chi Chen, and Chien-Hao Huang. Asymptotic behavior for a generalized domany–kinzel model. Journal of Statistical Mechanics: Theory and
    Experiment, 2017(2):023212, feb 2017.
    [7] Lung-Chi Chen. Asymptotic behavior for a version of directed percolation on a square lattice. Physica A: Statistical Mechanics and its Applications, 390(3):419 – 426, 2011.
    [8] Eytan Domany and Wolfgang Kinzel. Directed percolation in two dimensions: Numerical analysis and an exact solution. Phys. Rev. Lett., 47:5–8, Jul 1981.
    [9] Carl-Gustav Esseen. On the liapunoff limit of error in the theory of probability. Arkiv för Matematik, Astronomi och Fysik, A 28:1–19, 1942.
    [10] Ben T Graham. Sublinear variance for directed last-passage percolation. Journal of Theoretical Probability, 25(3):687–702, 2012.
    [11] Geoffrey R. Grimmett. Percolation, volume 321 of Grundlehren der mathematischen Wissenschaften. Springer-Verlag Berlin Heidelberg, 2 edition, 1999.
    [12] Malte Henkel, Haye Hinrichsen, and Sven Lübeck. Non-Equilibrium Phase Transitions. Springer Netherlands, 1 edition, 2008.
    [13] T. C. Li and Z. Q. Zhang. A long-range domany-kinzel model of directed percolation. Journal of Physics A: Mathematical and General, 16(12):L401–L406, Aug 1983.
    [14] Hugo Touchette. Physics Reports, volume 478. 2009.
    [15] F. Y. Wu and H. Eugene Stanley. Domany-kinzel model of directed percolation: Formulation as a random-walk problem and some exact results. Phys. Rev. Lett., 48:775–
    778, Mar 1982.
    描述: 碩士
    國立政治大學
    應用數學系
    106751001
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0106751001
    資料類型: thesis
    DOI: 10.6814/NCCU201900928
    顯示於類別:[應用數學系] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    100101.pdf576KbAdobe PDF289檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋