政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/125540
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113325/144300 (79%)
Visitors : 51174779      Online Users : 912
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/125540


    Title: 情緒分析交易策略設計
    Formulate a Trading Strategy Using Sentiment Analysis
    Authors: 吳文萱
    Wu, Wen-Xuan
    Contributors: 謝明華
    Hsieh, Ming-Hua
    吳文萱
    Wu, Wen-Xuan
    Keywords: 機器學習
    情緒分析
    新聞情緒
    交易策略
    Machine learning
    Sentiment analysis
    News sentiment
    Trading strategy
    Date: 2019
    Issue Date: 2019-09-05 15:48:06 (UTC+8)
    Abstract: 過去的文獻提供了財經新聞情緒、社群新聞情緒等對金融商品價格之間具有顯著相關性性的信心實證。Zhang and Skiena (2009) 中使用由大規模自然語言處理(Natural Language Processing , NLP)新聞分析系統生成的新聞數據,對公司的新聞發布頻率,情緒和主觀性如何預測或反應在其股票交易量和報酬上進行研究,並提供基於新聞市場的交易策略。Feuerriegel and Prendinger (2016) 中則肯定新聞情緒能解釋股價走勢並以新聞文本分析建構交易策略。本實證研究基於欲探討情緒分析對金融資產走勢是否具有影響性及預測力,利用數種監督式之機器學習分類方法,包括邏輯斯回歸 (Logistic Regression)、隨機森林 (Random Forest)、梯度提升 (Gradient Boosting)、自適應提升(Adaptive Boosting) 以及支持向量機 (Support Vector Machine),以台灣指數期貨的未來漲跌作為模型預測目標,尋找其中預測力最佳之模型並以此建構台指期交易策略。
    實證結果發現加入新聞情緒變數能有效提升多數模型之預測力,本實證研究挑選當日及隔日漲跌預測最佳之模型建構交易策略,在測試集之表現皆能擊敗買進持有策略及動能投資策略,預測隔日漲跌之策略表現優於預測當日漲跌之策略,情緒資料具有延遲顯現的效果,且其中以梯度提升模型預測之策略表現最佳。
    Studies in the past provides evidence of confidence in connection with news sentiment and financial assets trend. Zhang and Skiena (2009) uses news data including the companys’ news release frequency and sentiment generated by a large-scale Natural Language Processing (NLP) news analysis system to predict or reflect on its stock return and trading volume. The study also formulate trading strategies based on the news market. Feuerriegel and Prendinger (2016) confirmed that news sentiment can explain stock price movements and construct trading strategies with news text mining.
    The empirical study is also based on the need to explore whether sentiment analysis has an impact and predictive power on financial asset trends. The empirical study uses several supervised machine learning classification methods, including logistic regression, random forest, gradient boosting, adaptive boosting, and support vector machine. I predict the future rise and fall of Taiwan index futures and look for the model with the best predictive power to construct the trading strategy.
    The empirical result shows that the addition of news sentiment variables can effectively improve the predictive power of all models. This empirical study selects the best model to construc trading strategy with the best forecast of the day and the next day. The performance of the test set can beat the buy-and-hold strategy and momentum investment strategy and the strategy predicts that the strategy of the next day`s change is better than the forecast of the day`s change. The news sentiment has the effect of delaying the emergence, and the strategy of using the gradient boosting model is outperforming.
    Reference: Antweiler, W., & Frank, M. Z. (2004). Is all that talk just noise? The information content of internet stock message boards. The journal of Finance, 59(3), 1259-1294.
    Bellman, R., & Lee, E. S. (1978). Functional equations in dynamic programming. Aequationes Mathematicae, 17(1), 1-18.
    Breiman, L., Friedman, J., Olshen, R., & Stone, C. (1984). Classification and regression trees. Wadsworth Int. Group, 37(15), 237-251.
    Chan, W. S. (2003). Stock price reaction to news and no-news: drift and reversal after headlines. Journal of Financial Economics, 70(2), 223-260.
    Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine learning, 20(3), 273-297.
    Freund, Y., & Schapire, R. E. (1997). A decision-theoretic generalization of on-line learning and an application to boosting. Journal of computer and system sciences, 55(1), 119-139.
    Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232.
    Feuerriegel, S., & Prendinger, H. (2016). News-based trading strategies. Decision Support Systems, 90, 65-74.
    Haugeland, J. (1985). Artificial intelligence: the very idea. In: Cambridge, MA: MIT Press.
    Ho, T. K. (1995). Random decision forests. Paper presented at the Proceedings of 3rd international conference on document analysis and recognition.
    Keating, C., & Shadwick, W. F. (2002). A universal performance measure. Journal of performance measurement, 6(3), 59-84.
    Machinery, C. (1950). Computing machinery and intelligence-AM Turing. Mind, 59(236), 433.
    Malkiel, B. G., & Fama, E. F. (1970). Efficient capital markets: A review of theory and empirical work. The journal of Finance, 25(2), 383-417.
    Shannon, C. E. (1948). A mathematical theory of communication. Bell system technical journal, 27(3), 379-423.
    Sharpe, W. F. (1994). The sharpe ratio. Journal of portfolio management, 21(1), 49-58.
    Sortino, F. A., & Price, L. N. (1994). Performance measurement in a downside risk framework. the Journal of Investing, 3(3), 59-64.
    Sul, H., Dennis, A. R., & Yuan, L. I. (2014). Trading on twitter: The financial information content of emotion in social media. Paper presented at the 2014 47th Hawaii International Conference on System Sciences.
    Tetlock, P. C., Saar‐Tsechansky, M., & Macskassy, S. (2008). More than words: Quantifying language to measure firms` fundamentals. The journal of Finance, 63(3), 1437-1467.
    Wilder, J. W. (1978). New concepts in technical trading systems: Trend Research.
    Young, T. W. (1991). Calmar ratio: A smoother tool. Futures, 20(1), 40.
    Zhang, W., & Skiena, S. (2009). Trading strategies to exploit news sentiment. Submitted for publication.
    Description: 碩士
    國立政治大學
    風險管理與保險學系
    106358006
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0106358006
    Data Type: thesis
    DOI: 10.6814/NCCU201900710
    Appears in Collections:[Department of Risk Management and Insurance] Theses

    Files in This Item:

    There are no files associated with this item.



    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback