Reference: | Albert, M. A., & Dahling, J. J. (2016). Learning goal orientation and locus of control interact to predict academic self-concept and academic performance in college students. Personality and Individual Differences, 97, 245–248. https://doi.org/10.1016/j.paid.2016.03.074 Ali, L., Hatala, M., Gašević, D., & Jovanović, J. (2012). A qualitative evaluation of evolution of a learning analytics tool. Computers and Education, 58(1), 470–489. Ali, N., & Peebles, D. (2013). The effect of Gestalt laws of perceptual organization on the comprehension of three-variable bar and line graphs. Human Factors, 55(1), 183–203. Bandura, A. (1993). Perceived self-efficacy in cognitive development and functioning. Educational Psychologist, 28(2), 117–148. Barzilai, S., & Blau, I. (2014). Scaffolding game-based learning: Impact on learning achievements, perceived learning, and game experiences. Computers & Education, 70, 65–79. Brusilovsky, P., Hsiao, I. H., & Folajimi, Y. (2011). QuizMap: Open social student modeling and adaptive navigation support with TreeMaps. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 6964 LNCS, 71–82. Cascio, M. I., Botta, V. C., & Anzaldi, V. E. (2013). The role of self efficacy and internal locus of control in online learning. Journal of E-Learning and Knowledge Society, 9(3), 95–106. Caspi, A., & Blau, I. (2008). Social presence in online discussion groups: Testing three conceptions and their relations to perceived learning. Social Psychology of Education, 11(3), 323–346. Chang, M. M. (2005). Applying self-regulated learning strategies in a web-based instruction - An investigation of motivation perception. Computer Assisted Language Learning, 18(3), 217–230. Chen, I. S. (2017). Computer self-efficacy, learning performance, and the mediating role of learning engagement. Computers in Human Behavior, 72, 362–370. Conati, C., & Maclaren, H. (2010). Exploring the role of individual differences in information visualization. Proceedings of the Working Conference on Advanced Visual Interfaces, 199–206. Crawford, E. R., LePine, J. A., & Rich, B. L. (2010). Linking job demands and resources to employee engagement and burnout: A theoretical extension and meta-analytic test. Journal of Applied Psychology, 95(5), 834–848. Cui, W., Zhou, H., Qu, H., Wong, P. C., & Li, X. (2008). Geometry-based edge clustering for graph visualization. IEEE Transactions on Visualization and Computer Graphics, 14(6), 1277–1284. Davis, F. D. (1989). Perceived Usefulness, Perceived Ease of Use, and User Acceptance of Information Technology. MIS Quarterly, 13(3), 319. Debicki, B. J., Kellermanns, F. W., Barnett, T., Pearson, A. W., & Pearson, R. A. (2016). Beyond the Big Five: The mediating role of goal orientation in the relationship between core self-evaluations and academic performance. International Journal of Management Education, 14(3), 273–285. Denny, P., Luxton-Reilly, A., & Hamer, J. (2008). The PeerWise system of student contributed assessment questions. Conferences in Research and Practice in Information Technology Series, 78, 69–74. Dillenbourg, P. (2013). Design for classroom orchestration. Computers and Education, 69, 485–492. https://doi.org/10.1016/j.compedu.2013.04.013 Dillenbourg, P., & Jermann, P. (2010). Technology for classroom orchestration. New Science of Learning: Cognition, Computers and Collaboration in Education, 525–552. Eison, J. A. (1979). The development and validation of a scale to assess different student orientations towards grades and learning. Ekstrom, R. B., French, J. W., & Harman, H. H. (1976). Manual for Kit of factor-referenced cognitive tests. Educational testing service Princeton, NJ. Few, S. (2005). Keep Radar Graphs Below the Radar–Far Below. Perceptual Edge, (May), 1–5. Freedman, E. G., Shah, P., & Vekiri, I. (2005). The comprehension of quantitative information in graphical displays. The Cambridge Handbook of Visuospatial Thinking, 426–476. Gansner, E. R., & North, S. C. (1999). An Open Graph Visualization System and Its Applications. Software - Practice and Experience, 30(May 1999), 1203–1233. Gašević, D., Dawson, S., & Siemens, G. (2015). Let ’ s not forget : Learning analytics are about learning. TechTrends, 59(1), 64–71. Gibson, D., & de Freitas, S. (2016). Exploratory Analysis in Learning Analytics. Technology, Knowledge and Learning, 21(1), 5–19. Goldberg, J. H., & Kotval, X. P. (1999). Computer interface evaluation using eye movements: methods and constructs Joseph. International Journal of Industrial Ergonomics, 24(6), 631–645. Govaerts, S., Verbert, K., Duval, E., & Pardo, A. (2012). The student activity meter for awareness and self-reflection. Proceedings of the 2012 ACM Annual Conference Extended Abstracts on Human Factors in Computing Systems Extended Abstracts - CHI EA ’12, 869–884. Green, Tear Marie, & Fisher, B. (2010). Towards the personal equation of interaction: The impact of personality factors on visual analytics interface interaction. VAST 10 - IEEE Conference on Visual Analytics Science and Technology 2010, Proceedings, (November), 203–210. Green, Tera Marie, Jeong, D. H., & Fisher, B. (2010). Using personality factors to predict interface learning performance. Proceedings of the Annual Hawaii International Conference on System Sciences, 1–10. Helfman, J. I., & Goldberg, J. H. (2007). Selecting the Best Graph Based on Data, Tasks, and User Roles. Usability Professionals’ Association, UPA Conference on Patterns: Blueprints for Usability, Austin, TX, (July). Hsiao, I-Han. (2016). Mobile Grading Paper-Based Programming Exams: Automatic Semantic Partial Credit Assignment Approach. In K. Verbert, M. Sharples, & T. Klobučar (Eds.), Adaptive and Adaptable Learning (pp. 110–123). Cham: Springer International Publishing. Hsiao, I-Han, Pandhalkudi Govindarajan, S. K., & Lin, Y.-L. (2016). Semantic visual analytics for today’s programming courses. Proceedings of the Sixth International Conference on Learning Analytics & Knowledge - LAK ’16, 48–53. Hsiao, I. -Han, & Brusilovsky, P. (2012). Motivational Social Visualizations for Personalized E-Learning (pp. 153–165). https://doi.org/10.1007/978-3-642-33263-0_13 Hsiao, I. H., Huang, P. K., & Murphy, H. (2017). Uncovering reviewing and reflecting behaviors from paper-based formal assessment. Proceedings of the Seventh International Learning Analytics & Knowledge Conference, 319–328. Hsiao, I. Han, Bakalov, F., Brusilovsky, P., & König-Ries, B. (2013). Progressor: Social navigation support through open social student modeling. New Review of Hypermedia and Multimedia, 19(2), 112–131. Hsiao, I. Han, & Lin, Y. L. (2017). Enriching programming content semantics: An evaluation of visual analytics approach. Computers in Human Behavior, 72, 771–782. Hsiao, I., Sosnovsky, S., & Brusilovsky, P. (2008). Adaptive Navigation Support in an E-Learning System for Java Programming. Journal of Computer Assisted Learning, 26(4), 270–283. Hu, P. J. H., & Hui, W. (2012). Examining the role of learning engagement in technology-mediated learning and its effects on learning effectiveness and satisfaction. Decision Support Systems, 53(4), 782–792. Joo, Y. J., Lim, K. Y., & Kim, J. (2013). Locus of control, self-efficacy, and task value as predictors of learning outcome in an online university context. Computers & Education, 5(4), 149–158. Just, M. A., & Carpenter, P. A. (1976). Eye fixations and cognitive processes. Cognitive Psychology, 8(4), 441–480. Klein, H. J., Noe, R. A., & Wang, C. (2006). Motivation To Learn and Course Outcomes: the Impact of Delivery Mode, Learning Goal Orientation, and Perceived Barriers and Enablers. Personnel Psychology, 59(3), 665–702. Koffka, K. (2013). Principles of Gestalt psychology. Routledge. Li, R., Pelz, J., Shi, P., & Haake, A. R. (2012). Learning image-derived eye movement patterns to characterize perceptual expertise. Proceedings of the Annual Meeting of the Cognitive Science Society, 34(34), 1900–1905. Lu, Y., & Hsiao, I.-H. (2016). Seeking Programming-related Information from Large Scaled Discussion Forums, Help or Harm? Edm ’16, 442–447. Malcolm, G. L., & Henderson, J. M. (2009). The effects of target template specificity on visual search in real-world scenes: Evidence from eye movements. Journal of Vision, 9(11), 8–8. https://doi.org/10.1167/9.11.8 Mazur, D. J., & Hickam, D. H. (1993). Patients’ and Physicians’ Interpretations of Graphic Data Displays. Medical Decision Making, 13(1), 59–63. Michalski, R. S. (1993). Inferential Theory of Learning as a Conceptual Basis for Multistrategy Learning. Machine Learning, 11(2), 111–151. Nesbitt, K. V., & Friedrich, C. (2002). Applying Gestalt principles to animated visualizations of network data. Proceedings of the International Conference on Information Visualisation, 2002-Janua(January), 737–743. Okan, Yashmina, Garcia-Retamero, R., Cokely, E. T., & Maldonado, A. (2011). Individual Differences in Graph Literacy: Overcoming Denominator Neglect in Risk Comprehension. Journal of Behavioral Decision Making, 21, 453–456. Okan, Yasmina, Garcia-Retamero, R., Galesic, M., & Cokely, E. T. (2012). When Higher Bars Are Not Larger Quantities: On Individual Differences in the Use of Spatial Information in Graph Comprehension. Spatial Cognition & Computation, 12(2–3), 195–218. Papamitsiou, Z., & Economides, A. A. (2015). Temporal learning analytics visualizations for increasing awareness during assessment. RUSC. Universities and Knowledge Society Journal, 12(3), 129. Paredes, Y. V., Huang, P. K., Murphy, H., & Hsiao, I. H. (2017). A Subjective Evaluation of Web-based Programming Grading Assistant: Harnessing digital footprints from paper-based assessments. CEUR Workshop Proceedings, 1828, 23–30. Patel, K., Bancroft, N., Drucker, S. M., Fogarty, J., Ko, A. J., & Landay, J. A. (2010). Gestalt: Integrated Support for Implementation and Analysis in Machine Learning. Uist, 37–46. Payne, S. C., Youngcourt, S. S., & Beaubien, J. M. (2007). A meta-analytic examination of the goal orientation nomological net. Journal of Applied Psychology, 92(1), 128–150. https://doi.org/10.1037/0021-9010.92.1.128 Pinker, S. (1990). A theory of graph comprehension. Artificial Intelligence and the Future of Testing, 73–126. Ratwani, R. M., & Boehm-davis, D. A. (2008). Thinking graphically: Connecting vision and cognition during graph comprehension. Journal of Experimental Psychology, (703). Ratwani, R. M., & Trafton, J. G. (2008). Shedding light on the graph schema: Perceptual features versus invariant structure. Psychonomic Bulletin and Review, 15(4), 757–762. Rovai, A. P., & Baker, J. D. (2005). Gender Differences in Online Learning: Sense of Community, Perceived Learning, and Interpersonal Interactions. Quarterly Review of Distance Education, 6(1), 31–44. Shah, P., & Freedman, E. G. (2011). Bar and line graph comprehension: An interaction of top-down and bottom-up processes. Topics in Cognitive Science, 3(3), 560–578. Shah, P., Mayer, R. E., & Hegarty, M. (1999). Graphs as Aids to Knowledge Construction: Signaling Techniques for Guiding the Process of Graph Comprehension. Journal of Educational Psychology, 91(4), 690–702. Siemens, G., & Baker, R. S. J. de. (2012). Learning analytics and educational data mining: towards communication and collaboration. Proceedings of the 2nd International Conference on Learning Analytics and Knowledge, 252–254. Siemens, George, & Gasevic, D. (2012). Guest editorial-learning and knowledge analytics. Journal of Educational Technology and Society, 15(3). Steichen, B., Carenini, G., & Conati, C. (2013). User-adaptive information visualization: using eye gaze data to infer visualization tasks and user cognitive abilities. Iui, 317–328. Sun, R., Merrill, E., & Peterson, T. (2001). From implicit skills to explicit knowledge_ a bottom-up model of skill learning. Cognitive Science, 25, 203–244. Swan, K. (2001). Virtual interaction : Design factors affecting student satisfaction and perce ... Education, 22(2), 306–331. Retrieved from Toker, D., Conati, C., Carenini, G., & Haraty, M. (2012). Towards adaptive information visualization: On the influence of user characteristics. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7379 LNCS, 274–285. Toker, D., Conati, C., Steichen, B., & Carenini, G. (2013). Individual user characteristics and information visualization: connecting the dots through eye tracking. In proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 295–304). VandeWalle, D. M. (1997). Development and validation of a work domain achievement goals instrument. Educational and Psychological Measurement, 8(6), 995–1015. Venkatesh, V. (2000). Determinants of perceived ease of use: integrating perceived behavioral control, computer anxiety and enjoyment into the Technology Acceptance Mode. Information Systems Research, 11(4), 342–365. Wang, C., Shannon, D. M., & Ross, M. E. (2010). Students ’ characteristics , self-regulated learning , technology self-ef fi cacy , and course outcomes in online learning. Dissertation, 34(3), 302–323. Wang, M., Wu, B., Kinshuk, Chen, N. S., & Spector, J. M. (2013). Connecting problem-solving and knowledge-construction processes in a visualization-based learning environment. Computers and Education, 68, 293–306. Wu, D., Hiltz, Roxanne, S., & Bieber, M. (2010). Acceptance of educational technology: field studies of asynchronous participatory examinations. Communications of the Association for Information Systems, 26(1), 21. Xanthopoulou, D., Bakker, A. B., Demerouti, E., & Schaufeli, W. B. (2009). Reciprocal relationships between job resources, personal resources, and work engagement. Journal of Vocational Behavior, 74(3), 235–244. Yi, M. Y., & Hwang, Y. (2003). Predicting the use of web-based information systems: Self-efficacy, enjoyment, learning goal orientation, and the technology acceptance model. International Journal of Human Computer Studies, 59(4), 431–449. Yigitbasioglu, O. M., & Velcu, O. (2012). A review of dashboards in performance management: Implications for design and research. International Journal of Accounting Information Systems, 13(1), 41–59. Zajac, D. M., Button, S. B., & Mathieu, J. E. (1996). Goal Orientation in Organizational Research : A Conceptual and Empirical Foundation. Organizational Behavior and Human Decision Processes, 67(1), 26–48. Ziemkiewicz, C., Crouser, R. J., Yauilla, A. R., Su, S. L., Ribarsky, W., & Chang, R. (2011). How locus of control influences compatibility with visualization style. VAST 2011 - IEEE Conference on Visual Analytics Science and Technology 2011, Proceedings, 81–90. Ziemkiewicz, C., & Kosara, R. (2009). Preconceptions and individual differences in understanding visual metaphors. Computer Graphics Forum, 28(3), 911–918. |