English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51578393      Online Users : 905
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 企業管理學系 > 期刊論文 >  Item 140.119/125425
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/125425


    Title: 應用網路搜尋行為預測房地產市場
    Predicting Housing Markets through the Searching Behavior on Internet
    Authors: 林左裕
    Lin, Tsoyu Calvin
    Contributors: 地政系
    Keywords: 搜尋引擎;搜尋行為;住宅價格;住宅交易量;大數據;Google 搜尋趨勢
    Search Engine ; Searching Behavior ; Housing Price; Housing Volume; Big Data; Google Trend
    Date: 2019-06
    Issue Date: 2019-09-04 10:38:00 (UTC+8)
    Abstract: 隨著網路時代的來臨,人們透過網路搜尋資訊及交易的頻率大為增加,相關數據之 數量及種類也大幅成長,這些數據雖細碎龐雜,卻記錄著人們自搜尋、瀏覽至交易行為 決策之過程。以往我國之不動產研究或政策擬定,資料來源多來自官方、民間企業或學 術統計為主,這些資訊雖給予政府或企業分析、預估市場一定程度之基礎,然其資料背 景不同且發布時間落後,於資料使用上仍存有諸多限制。而搜尋引擎具有即時性、隱含 潛在經濟活動意象之特性,應可補足過去統計資料之不足,提供不動產市場更即時、精 確之預估。本研究以自 Google Trends 搜集之搜尋引擎指數作為自變數,加入傳統不動產市場之
    計量模型,同時探討其與住宅交易量與價格間之關係。結果發現 Google Trends 指數對於
    房地產之價格及交易量均存在顯著領先之關係。研究建議未來分析可藉瞭解搜尋引擎之
    大數據與房地產市場間之關聯,可提升在不動產市場資訊或預估之即時掌握,俾供政府
    擬定政策或企業、民眾決策時之參考。
    With the increasing popularity of the internet, people acquire information frequently via internet. Data of searching and trading activities on internet accumulate sharply. These data, although fragmented, record people from search, browse and decision-making process. Traditional analysis of real estate market or policy making rely on statistics published by governments, companies, or academic institutions. Although these data provide some basis information, there are still some restrictions, i.e., limited sample and delayed posting. Data on search engines may complement these flaws. They are extremely timely and cover a great variety of economic activities, providing prompt and accurate forecast for the markets. This study applies the search engine index provided by Google Trends to explore the relationship between the search engine index and housing markets. Results show that search engine index significantly leads housing prices and transaction volume, indicating that people tend to search and obtain information before entering real estate markets. By understanding the leading effect of "big data" on search engine to the housing markets, we can forecast real estate markets more accurately, and provide more timely implications for governments, enterprises and the public.
    Relation: 應用經濟論叢, No.105, pp.219-254
    Data Type: article
    DOI 連結: https://doi.org/   10.3966/054696002019060105006
    DOI: 10.3966/054696002019060105006
    Appears in Collections:[企業管理學系] 期刊論文

    Files in This Item:

    File Description SizeFormat
    113.pdf1468KbAdobe PDF2424View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback