Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/125104
|
Title: | 加密貨幣設計之代理人基計算模型 Agent-Based Computational Modeling of Cryptocurrency Design |
Authors: | 吳立思 Ude, Felix |
Contributors: | 陳樹衡 Chen, Shu-Heng 吳立思 Ude, Felix |
Keywords: | 加密貨幣 比特幣 代理人基計算模型 Cryptocurrency Bitcoin Agent-Based Computation |
Date: | 2019 |
Issue Date: | 2019-08-07 17:20:11 (UTC+8) |
Abstract: | Cryptocurrencies, such as Bitcoin, witnessed a surge in popularity during recent years. With the rise of attention, the discussion about a better design of these cryptocurrencies also increased, to solve issues like security problems and network congestion. Many suggested solutions require a total redesign of the cryptocurrency. This thesis looks into ways to redesign the cryptocurrency Bitcoin in a more subtle way, by only optimizing its current parameters. For that reason an agent-based computation model is used to simulate the Bitcoin market and its transaction system. Its parameters are optimized and compared to the real Bitcoin parameters. The results suggest a trade-off between security and economic efficiency, and that the real parameter values of Bitcoin are sub-optimal. |
Reference: | Altman, E., Reiffers, F. A., Menasché, D. S., Matar, M., Dhamal, S., & Touati, C. (2018). Mining competition in a multi-cryptocurrency ecosystem at the network edge: a congestion game approach. 1st Symposium on Cryptocurrency Analysis (SOCCA 2018). Arifovic, J. (2002). Exchange rate volatility in the artificial foreign exchange market. In Evolutionary computation in economics and finance (pp. 123–134). Springer. Athey, S., Parashkevov, I., Sarukkai, V., & Xia, J. (2016). Bitcoin Pricing, Adoption, and Usage: Theory and Evidence. Stanford University Graduate School of Business Research Paper, 16(42), 70. Retrieved from https://papers.ssrn.com/ sol3/papers.cfm?abstract{ }id=2826674 Back, A. (2002). Hashcash - A Denial of Service Counter-Measure. Technical Re- port(August), 1–10. Bitcoin Wiki. (2019a). Block chain. Retrieved from https://en.bitcoin.it/ wiki/Block chain Bitcoin Wiki. (2019b). Controlled supply. Retrieved from https://en.bitcoin .it/wiki/Controlled supply Bitcoinfees.info. (2019). Bitcoin transaction fees. Retrieved 2019.05.25, from https://bitcoinfees.info/ BitInfoCharts. (2019a). Bitcoin avg. transaction fee historical chart. Retrieved 2019.06.04, from https://bitinfocharts.com/comparison/bitcoin -transactionfees.html BitInfoCharts. (2019b). Bitcoin median transaction value historical chart. Re- trieved 2019.04.23, from https://bitinfocharts.com/comparison/ mediantransactionvalue-btc-sma90.html Blank, J., & Deb, K. (n.d.). pymoo - Multi-objective Optimization in Python. https://pymoo.org. 55Blockchain.com. (2019a). Bitcoin difficulty. Retrieved 2019.05.26, from https:// www.blockchain.com/charts/difficulty?timespan=3years Blockchain.com. (2019b). Blockchain size. Retrieved 2019.05.25, from https:// www.blockchain.com/charts/blocks-size Blockchain.com. (2019c). Hash rate. Retrieved 2019.05.26, from https://www .blockchain.com/charts/hash-rate?timespan=3years Blockchain.com. (2019d). Hashrate distribution. Retrieved 2019.05.26, from https://www.blockchain.com/pools Blockchain.com. (2019e). Hash rate; the estimated number of tera hashes per second (trillions of hashes per second) the bitcoin network is performing. Re- trieved 2019.04.13, from https://www.blockchain.com/charts/hash -rate?timespan=all Blockchain.com. (2019f). Market price (usd). Retrieved 2019.05.29, from https:// www.blockchain.com/charts/market-price?timespan=all Blockchain.com. (2019g). Mempool size. Retrieved 2019.05.29, from https:// www.blockchain.com/de/charts/mempool-size?timespan=all# Blockchain.com. from (2019h). Miner’s revenue. Retrieved 2019.05.25, https://www.blockchain.com/charts/miners-revenue ?timespan=2years Budish, E. (2018). The economic limits of bitcoin and the blockchain (Tech. Rep.). National Bureau of Economic Research. Buterin, V. (2016). On inflation, transaction fees and cryptocurrency monetary policy. Ethereum Blog. Retrieved 2016-07-26, from https://blog.ethereum.org/ 2016/07/27/inflation-transaction-fees-cryptocurrency -monetary-policy/ Buybitcoinworldwide. (2019). How many bitcoins are there? Retrieved 2019.04.25, from https://www.buybitcoinworldwide.com/how-many -bitcoins-are-there/# 56Calle, P. (2017). NSGA-II explained. Analytics lab of University of Okla- Retrieved 2017-10-24, from http://oklahomaanalytics.com/ homa. data-science-techniques/nsga-ii-explained/ Carlsten, M., Kalodner, H., Weinberg, S. M., & Narayanan, A. (2016). On the insta- bility of bitcoin without the block reward. Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security, 154–167. Catalini, C., & Gans, J. S. (2016). Some simple economics of the blockchain (Tech. Rep.). National Bureau of Economic Research. CEIC. (2019). China electricity price. Retrieved 2019.04.13, from https://www .ceicdata.com/en/china/electricity-price Chen, S.-H., & Chie, B.-T. (2008). Lottery markets design, micro-structure, and macro- behavior: An ace approach. Journal of Economic Behavior & Organization, 67(2), 463–480. Chiu, J., & Koeppl, T. V. (2017). The economics of cryptocurrencies–bitcoin and beyond. Available at SSRN 3048124. CIA. (2016). Electricity consumption - country comparision. Retrieved 2019.05.26, from https://www.cia.gov/library/publications/the -world-factbook/rankorder/2233rank.html Cocco, L., Concas, G., & Marchesi, M. (2017). Using an artificial financial market for studying a cryptocurrency market. Journal of Economic Interaction and Coordina- tion, 12(2), 345–365. doi: 10.1007/s11403-015-0168-2 Cocco, L., & Marchesi, M. (2016). Modeling and simulation of the economics of mining in the Bitcoin market. PLoS ONE, 11(10), 1–42. doi: 10.1371/journal.pone .0164603 Cocco, L., Tonelli, R., & Marchesi, M. (2019). An agent based model to analyze the bitcoin mining activity and a comparison with the gold mining industry. Future Internet, 11(1), 8. 57Cong, L. W., He, Z., & Li, J. (2018). Decentralized Mining in Centralized Pools. Ssrn. doi: 10.2139/ssrn.3143724 Croman, K., Decker, C., Eyal, I., Gencer, A. E., Juels, A., Kosba, A., . . . others (2016). On scaling decentralized blockchains. International Conference on Financial Cryp- tography and Data Security, 106–125. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjec- tive genetic algorithm: NSGA-II. IEEE transactions on evolutionary computation, 6(2), 182–197. Decker, C., & Wattenhofer, R. (2013). Information propagation in the Bitcoin network. 13th IEEE International Conference on Peer-to-Peer Computing, IEEE P2P 2013 - Proceedings. doi: 10.1109/P2P.2013.6688704 Digiconomist.net. (2019). Bitcoin energy consumption index. Retrieved 2019.05.26, from https://digiconomist.net/bitcoin-energy-consumption Di Salvo, M. (2019). Why are venezuelans seeking refuge in crypto-currencies? BBC News. Retrieved 2019-03-19, from https://www.bbc.com/news/ business-47553048 Easley, D., O’Hara, M., & Basu, S. (2019). From mining to markets: The evolution of bitcoin transaction fees. Journal of Financial Economics. Gode, D. K., & Sunder, S. (1993). Allocative efficiency of markets with zero- intelligence traders: Market as a partial substitute for individual rationality. Journal of political economy, 101(1), 119–137. Goldwasser, S., & Bellare, M. (1996). Lecture notes on cryptography. Summer course ’Cryptography and computer’ security at MIT. Goren, G., & Spiegelman, A. (2019). Mind the mining. arXiv preprint arXiv:1902.03899. Haber, S., & Stornetta, W. S. (1991). How to Time-Stamp a Digital Document. Jour- nal of Cryptology, 3(2), 99–111. Retrieved from https://www.anf.es/pdf/ Haber{ }Stornetta.pdf 58Hoofnagle, C. J., Urban, J. M., & Li, S. (2012). Mobile payments: Consumer benefits & new privacy concerns. Available at SSRN 2045580. Huberman, G., Leshno, J., & Moallemi, C. C. (2019). An economic analysis of the bitcoin payment system. Columbia Business School Research Paper(17-92). Kaskaloglu, K. (2014). Near zero bitcoin transaction fees cannot last forever. Pro- ceedings of the International Conference on Digital Security and Forensics (Digi- talSec2014). King, S., & Nadal, S. (2012). Ppcoin: Peer-to-peer crypto-currency with proof-of-stake. self-published paper, August, 19. Kroll, J. A., Davey, I. C., & Felten, E. W. (2013). The economics of bitcoin mining, or bitcoin in the presence of adversaries. In (Vol. 2013, p. 11). Lee, K., Ulkuatam, S., Beling, P., & Scherer, W. (2018). Generating synthetic bit- coin transactions and predicting market price movement via inverse reinforcement learning and agent-based modeling. Jasss, 21(3). doi: 10.18564/jasss.3733 Luther, W. J. (2016). Cryptocurrencies, Network Effects, and Switching Costs. Con- temporary Economic Policy, 34(3), 553–571. doi: 10.1111/coep.12151 Ma, J., Gans, J. S., & Tourky, R. (2018). Market structure in bitcoin mining (Tech. Rep.). National Bureau of Economic Research. Marks, R. (2006). Market design using agent-based models. Handbook of computa- tional economics, 2, 1339–1380. Montgomery, M. (2015). Why you can’t cheat at bitcoin. IEEE Specturm. Retrieved from https://spectrum.ieee.org/computing/networks/ the-future-of-the-web-looks-a-lot-like-bitcoin Narzisi, G., Mysore, V., & Mishra, B. (2006). Multi-objective evolutionary optimization of agent-based models: an application to emergency response planning. International Conference on Computational Intelligence(Ci), 224–230. Newman, M. E. (2005). Power laws, Pareto distributions and Zipf’s law. Contemporary Physics, 46(5), 323–351. doi: 10.1080/00107510500052444 59Pagnotta, E. (2018). Bitcoin as decentralized money: Prices, mining rewards, and network security. Mining Rewards, and Network Security (October 26, 2018). Pappalardo, G., Di Matteo, T., Caldarelli, G., & Aste, T. (2018). Blockchain inefficiency in the bitcoin peers network. EPJ Data Science, 7(1), 30. Raberto, M., Cincotti, S., Dose, C., Focardi, S. M., & Marchesi, M. (2005). Price formation in an artificial market: Limit order book versus matching of supply and demand. Lecture Notes in Economics and Mathematical Systems, 550, 305–315. doi: 10.1007/3-540-27296-8 20 Raberto, M., Cincotti, S., Focardi, S. M., & Marchesi, M. (2001). Agent-based simu- lation of a financial market. Physica A: Statistical Mechanics and its Applications, 299(1-2), 319–327. doi: 10.1016/S0378-4371(01)00312-0 Raberto, M., Cincotti, S., Focardi, S. M., & Marchesi, M. (2003). Traders’ Long- Run Wealth in an Artificial Financial Market. Computational Economics, 22(2-3), 255–272. doi: 10.1023/A:1026146100090 Rompel, J. (1990). One-way functions are necessary and sufficient for secure sig- natures. In Proceedings of the twenty-second annual acm symposium on theory of computing (pp. 387–394). Sapirshtein, A., Sompolinsky, Y., & Zohar, A. (2016). Optimal selfish mining strategies in bitcoin. International Conference on Financial Cryptography and Data Security, 515–532. Satoshi Nakamoto. (2009). Bitcoin: A Peer-to-Peer Electronic Cash System. , 1–9. doi: 10.1007/s10838-008-9062-0 Seah, C. W., Ong, Y. S., Tsang, I. W., & Jiang, S. (2012). Pareto rank learning in multi-objective evolutionary algorithms. 2012 IEEE Congress on Evolutionary Com- putation, CEC 2012, 10–15. doi: 10.1109/CEC.2012.6252865 Sholtz, P. (2001). Transaction costs and the social cost of online privacy. First Monday, 6(5). 60Statista. (2019). Number of blockchain wallet users worldwide from 1st quarter 2016 to 1st quarter 2019. Retrieved 2019.04.25, from https://www.statista.com/ statistics/647374/worldwide-blockchain-wallet-users/ Terna, P., Maggiora, M., & Battistoni, L. (2016). Emerging cryptocurrency trust in an agent-based model (Doctoral dissertation). Universita di Torino. Varian, H. R. (1996). Differential pricing and efficiency. First monday, 1(2). WikiMedia. (2013). Bitcoin block data. Retrieved from https://de.wikipedia .org/wiki/Datei:Bitcoin Block Data.png Williamson, O. E. (1975). Markets and hierarchies. New York, 2630. Wooldridge, J. M. (2015). Introductory econometrics: A modern approach. Nelson Education. Yermack, D. (2017). Corporate governance and blockchains. Review of Finance, 21(1), 7–31. doi: 10.1093/rof/rfw074 Zhou, Q., Zhang, Q., & Zhang, Q. (2017). Agent-based simulation research on bit- coin price fluctuation. DEStech Transactions on Computer Science and Engineer-ing(aiea). |
Description: | 碩士 國立政治大學 應用經濟與社會發展英語碩士學位學程(IMES) 106266012 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0106266012 |
Data Type: | thesis |
DOI: | 10.6814/NCCU201900519 |
Appears in Collections: | [應用經濟與社會發展英語碩士學位學程 (IMES)] 學位論文
|
Files in This Item:
File |
Size | Format | |
601201.pdf | 3197Kb | Adobe PDF2 | 114 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|