政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/124936
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 114014/145046 (79%)
造訪人次 : 52045313      線上人數 : 614
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/124936


    題名: 以深度學習模型預測台灣ETF價格走勢
    作者: 吳凱華
    Wu, Kai-Hua
    貢獻者: 蔡炎龍
    蕭明福

    吳凱華
    Wu, Kai-Hua
    關鍵詞: 深度學習
    類神經網路
    交易所買賣基金
    日期: 2019
    上傳時間: 2019-08-07 16:48:30 (UTC+8)
    摘要: 交易所買賣基金(Exchange Traded Funds, ETF)有別於個股投資,具有分散風險的特性,是一種追蹤特定股價指數的投資商品,也就是一種將股票指數商品化並長期持有的金融商品。
    持有金融商品的目的就是獲利,因此價格或趨勢的預測準確率就變得相當的重要。文獻上實證發現類神經網路較傳統時間序列方法的預測能力高,加上近年機器學習快速發展,本文以類神經網路長短期記憶模型與生成對抗網路為研究方法,建立一個能廣泛運用在台灣非金融類交易所買賣基金的價格與走勢預測。變數除了有收盤價與成交量之外,交易所買賣基金屬於長期持有的商品,產業與總體的變化也是影響行情走勢的重要因素,因此加入匯豐台灣製造業採購經理人指數做為總體變數。此外,為了捕捉總體變數造成的價格影響,加入二十日與四十五日的收盤價移動平均捕捉價格趨勢。
    實證結果發現,使用長短期記憶模型具有預測波動較大的台灣非金融類交易所買賣基金之收盤價格能力,而生成對抗網路具有較高的預測漲跌能力,且行情確實為牛市的時候,生成對抗網路也有較高的能力夠捕捉此趨勢。
    參考文獻: 中文文獻
    胡依淳(2018),「深度卷積神經網路中卷積層之分析及比較」,國立暨南國際大學電機工程學系碩士論文。

    陳全溢(2018),「結合類神經網路預測與投資策略於台灣50指數股票型基金之操作」,國立中興大學資訊管理學系碩士論文。

    陳俊諺(2018),「運用類神經網路與田口法預測台灣ETF指數」,中原大學,資訊管理系碩士論文。

    黃焜烽(2018),「利用深度類神經網路模型預測台灣股價指數走勢」,國立臺北大學經濟系碩士論文。

    楊國良(2017),「運用倒傳遞類神經網路預測台灣50指數ETF股價走勢」,國立金門大學理工學院工程科技碩士在職專班資訊系統組碩士論文。

    英文文獻
    Adam Santoro, Ryan Faulkner, David Raposo, Jack Rae, Mike Chrzanowski, Théophane Weber, Daan Wierstra, Oriol Vinyals, Razvan Pascanu, Timothy Lillicrap. (2018). Relational recurrent neural networks. NeurIPS 2018.

    Alex Graves, Greg Wayne, Ivo Danihelka. (2014). Neural Turing Machines. arXiv:1410.5401v2

    Amin Hedayati Moghaddama, Moein Hedayati Moghaddamb, Morteza Esfandyaric. (2016). Stock market index prediction using artificial neural network. Journal of Economics, Finance and Administrative Science Volume 21, Issue 41, 89–93

    Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, Illia Polosukhin. (2017). Attention Is All You Need. arXiv:1706.03762v5.

    Dzmitry Bahdanau, Kyunghyun Cho, Yoshua Bengio. (2016). Neural Machine Translation by Jointly Learning to Align and Translate. arXiv:1409.0473v7.

    Ian J. Goodfellow, Jean Pouget-Abadiey, Mehdi Mirza, Bing Xu, David Warde-Farley, Sherjil Ozairz, Aaron Courville, Yoshua Bengio. (2014). Generative Adversarial Nets. NIPS 2014.

    Ilya Sutskever, Oriol Vinyals, Quoc V. Le. (2014). Sequence to Sequence Learning with Neural Networks. NIPS 2014.

    John Gamboa (2017). Deep Learning for Time-Series Analysis. arXiv:1701.01887v1.

    KangZhang, GuoqiangZhong, JunyuDong, ShengkeWang, YongWang. (2019). Stock Market Prediction Based on Generative Adversarial Network. Procedia Computer Science, Volume 147, 2019, Pages 400-406.

    Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau, Fethi Bougares, Holger Schwenk, Yoshua Bengio. (2014). Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. arXiv:1406.1078v3.

    Masaya Abe1 and Hideki Nakayama2. (2018). Deep Learning for Forecasting Stock Returns in the Cross-Section. arXiv:1801.01777v4.

    Mikołaj Bi´nkowski, Gautier Marti, Philippe Donnat. (2018). Autoregressive Convolutional Neural Networks for Asynchronous Time Series. arXiv:1703.04122v4.

    Minh-Thang Luong Hieu Pham Christopher D. Manning. (2015). Effective Approaches to Attention-based Neural Machine Translation. arXiv:1508.04025v5.

    S.E. Yi, A. Viscardi, T. Hollis. (2018). A Comparison of LSTMs and Attention Mechanisms for Forecasting Financial Time Series. arXiv:1812.07699v1

    Sepp Hochreiter and Jurgen Schmidhuber. (1997). LONG SHORT-TERM MEMORY. Neural Computation 9(8):1735-1780.

    SIMA SIAMI NAMIN1, AKBAR SIAMI NAMIN2. (2018). FORECASTING ECONOMIC AND FINANCIAL TIME SERIES: ARIMA VS. LSTM. arXiv:1803.06386v1.

    T. Kimoto ; K. Asakawa ; M. Yoda ; M. Takeoka. (1990). Stock market prediction system with modular neural networks.IEEE 10.1109/IJCNN.1990.137535.

    Takashi MATSUBARA, Member, Ryo AKITA, Nonmember, and Kuniaki UEHARA. (2018). Stock Price Prediction by Deep Neural Generative Model of News Articles. IEICE Transactions on Information and Systems, 2018 Volume E101.D Issue 4, Pages 901-908.

    Thomas R. Cook and Aaron Smalter Hall. (2017). Macroeconomic Indicator Forecasting with Deep Neural Networks. Federal Reserve Bank of Kansas City, Research Working Paper 17-11, September 2017

    Trieu H. Trinh1 Andrew M. Dai Minh-Thang Luong Quoc V. Le. (2018). Learning Longer-term Dependencies in RNNs with Auxiliary Losses. ICLR 2018.

    V.V.Kondratenko, Yu.A Kuperin.(2003).Using Recurrent Neural Networks To Forecasting of Forex. arXiv:cond-mat/0304469v1.

    V´ıctor Campos, Brendan Jouz, Xavier Gir´o-i-Nietox, Jordi Torresy, Shih-Fu Chang. (2018) “SKIP RNN: LEARNING TO SKIP STATE UPDATES IN RECURRENT NEURAL NETWORKS. ICLR 2018

    Wei Bao, Jun Yue, Yulei Rao. (2017). A deep learning framework for financial time series using stacked autoencoders and long-short term memory. PLoS ONE 12(7): e0180944. https://doi.org/10.1371/journal.pone.0180944

    Xiao Dingy, Yue Zhangz, Ting Liuy, Junwen Duan. (2015). Deep Learning for Event-Driven Stock Prediction. IJCAI 2015.

    Xingyu Zhou, Zhisong Pan, Guyu Hu, Siqi Tang, Cheng Zhao. (2018). Stock Market Prediction on High-Frequency Data Using Generative Adversarial Nets. Mathematical Problems in Engineering, Volume 2018, Article ID 4907423, 11 pages.

    Xin-Yao Qian. (2017). Financial Series Prediction: Comparison Between Precision of Time Series Models and Machine Learning Methods. arXiv:1706.00948.
    描述: 碩士
    國立政治大學
    經濟學系
    106258009
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0106258009
    資料類型: thesis
    DOI: 10.6814/NCCU201900589
    顯示於類別:[經濟學系] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    800901.pdf3436KbAdobe PDF21檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋