政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/124923
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113318/144297 (79%)
造访人次 : 51056455      在线人数 : 866
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/124923


    题名: 臺灣北部區域房價傳遞之研究 ─以房價漣漪效應觀點
    Study on the rigional housing price diffusion in Northern Taiwan : Based on the Ripple Effects of housing prices
    作者: 汪芷均
    Wang, Jhih-Jyun
    贡献者: 劉小蘭
    吳文傑

    汪芷均
    Wang, Jhih-Jyun
    关键词: 房價漣漪效應
    區域房價
    Granger因果關係
    Housing Price Ripple Effect
    Regional housing price
    Granger Causality Test
    日期: 2019
    上传时间: 2019-08-07 16:45:34 (UTC+8)
    摘要: 近年來不動產價格不斷高漲,引發各界的關注,而使居住正義成為顯學,各界開始由不同面向進行探討,以檢視房價的成因或相關之研究,然區域間的房價是否會彼此影響則無廣泛研究,而政府在擬訂政策或規劃時,鮮有考量區域房價擴散之情形,易造成一地房價受政府政策影響後連帶擴散至其他地區,使房市政策多掣肘。本研究以臺灣北部區域為範圍使用房價指數進行時間序列分析,利用衝擊反應函數及Granger因果關係檢定,進行縣市尺度與行政區尺度之實證分析。
    研究結果顯示,縣市尺度下臺北市為臺灣北部區域之房價漣漪中心,其正向的房價衝擊對其他縣市亦造成正向的房價反應,行政區尺度下則以臺北市住宅單價最高之行政區─大安區為房價漣漪中心,經實證結果可得知其對外圍地區的房價影響程度隨距離增加而減弱,而最外圍地區具有反波及效果,由最外圍地區之房價再反波及影響中心地區─大安區。臺灣北部區域房價逐層波及效果主要仍歸因於地理位置鄰近,又本研究之空間單位設定為行政區,與過往相關研究以城市為空間單位有所區別,因此逐層波及效果較不明顯。
    In recent years, housing prices have been rising, causing public concerns. Scholars have begun to explore different aspects to examine the causes of housing prices or its related research. However, whether regional housing prices will affect each other has not been widely studied. In the formulation of policies, a government rarely considers the possible spread of housing prices from its region to another. Housing prices in one place could be easily affected by its government policy, but neglecting the fact that such influenced housing prices would then spread to other regions will eventually constrain the effectiveness of the housing market policy itself. In this study, a time series analysis was conducted using the price index in northern Taiwan. The impulse response function and the Granger causality test were used to conduct an empirical analysis on the city scale and the administrative district scale.
    The results of the study show that Taipei City is the center of the housing prices ripple in the northern part of Taiwan under the city scale, and its positive housing price shock has also caused positive housing price responses from other counties and cities. Under the administrative district scale, Da`an District is the center of the housing prices ripple. According to the empirical results, its degree of influence on housing prices in the peripheral areas will decrease with the increase in distance. The most peripheral areas, on the other hand, also have the ability to influence the central area, and the housing prices in the peripheral areas will come back to influence the central area - Da`an District. The ripple impact on housing prices in northern Taiwan is still mainly due to geographical proximity. Moreover, unlike past studies where cities are a spatial unit, the space unit of this study is set on administrative districts; therefore, the ripple effect is less obvious.
    參考文獻: 中文參考文獻
    1. 專書
    林英彥,1999,『土地經濟學通論』,臺北:文笙書局。
    林森田、丁秀吟,2017,『土地經濟學』,臺北:林森田。
    梁仁旭、陳奉瑤,2014,『不動產估價理論』,臺北:財團法人中國地政研究所。
    陳旭昇,2018,『時間序列分析:總體經濟與財務金融之應用』,臺北:臺灣東華。
    楊奕農,2008,『時間序列分析─經濟與財務上之應用』,臺北:雙葉書廊。
    2. 期刊論文
    林佩萱,2015,「家戶購屋與生育行為關係:資源排擠與動機刺激」,『住宅學報』,24(1):89-115。
    林秋瑾、楊宗憲、張金鶚,1996,「住宅價格指數之研究-以台北市為例」,『住宅學報』,(4):1-30。
    胡勝正,2015,「從房價所得比看臺灣的社會不公」,『臺灣經濟預測與政策』,45(2):23-43。
    3. 博、碩士論文
    曹妤,2016,「住宅類綠建築評估項目對不動產估價調整率之影響」,政治大學地政研究所博士論文:臺北。
    外文參考文獻
    1. 專書
    Glantz, M. H., Katz, R. W., & Nicholls, N. (Eds.), 1991, Teleconnections linking worldwide climate anomalies (Vol. 535), Cambridge: Cambridge University Press.
    Kounin, J. S., 1970, Discipline and group management in classrooms., New York: Holt, Rinehart & Winston.
    2. 期刊論文
    Ashworth, J., & Parker, S. C., 1997, “Modelling regional house prices in the UK.”, Scottish Journal of Political Economy, 44(3): 225-246.
    Bailey, M. J., Muth, R. F., & Nourse, H. O., 1963, “A regression method for real estate price index construction.”, Journal of the American Statistical Association, 58(304): 933-942.
    Bajic, V., 1983, “The effects of a new subway line on housing prices in metropolitan Toronto.”, Urban Studies, 20(2): 147-158.
    Balcilar, M., Beyene, A., Gupta, R., & Seleteng, M., 2013, “Ripple’effects in South African house prices.” Urban Studies, 50(5): 876-894.
    Berg, L., 2002, “Prices on the second-hand market for Swedish family houses: correlation, causation and determinants.” European Journal of housing policy, 2(1): 1-24.
    Boelhouwer, P., Haffner, M., Neuteboom, P., & Vries, P, 2004, “House prices and income tax in the Netherlands: An international perspective.”, Housing Studies, 19(3): 415-432.
    Boterman, W. R., Karsten, L., & Musterd, S., 2010, “Gentrifiers settling down? Patterns and trends of residential location of middle-class families in Amsterdam.”, Housing Studies, 25(5): 693-714.
    Bucchianeri, G. W., & Minson, J. A., 2013, “A homeowner`s dilemma: Anchoring in residential real estate transactions.”, Journal of Economic Behavior & Organization, 89: 76-92.
    Case, K. E., & Shiller, R. J, 1990, “Forecasting prices and excess returns in the housing market.”, Real Estate Economics, 18(3): 253-273.
    Case, K. E., & Shiller, R. J., 1988, “The behavior of home buyers in boom and post-boom markets.” New England Economic Review, nov: 29-46.
    Chen, P. F., Chien, M. S., & Lee, C. C., 2011, “Dynamic modeling of regional house price diffusion in Taiwan.”, Journal of Housing Economics, 20(4): 315-332.
    Chien, M. S., 2010, “Structural breaks and the convergence of regional house prices.” The Journal of Real Estate Finance and Economics, 40(1): 77-88.
    Clapp, J. M., & Tirtiroglu, D., 1994, “Positive feedback trading and diffusion of asset price changes: evidence from housing transactions.”, Journal of Economic Behavior & Organization, 24(3): 337-355.
    Cook, S., 2005, “Detecting long‐run relationships in regional house prices in the UK.”, International Review of Applied Economics, 19(1): 107-118.
    De Jong, P. A., Brouwer, A. E., & McCann, P., 2016, “Moving up and down the urban hierarchy: age-articulated interregional migration flows in the Netherlands.” The Annals of Regional Science, 57(1): 145-164.
    Debrezion, G., Pels, E. A., & Rietveld, P., 2006, “The impact of rail transport on real estate prices: an empirical analysis of the Dutch housing market.”, Urban Studies, 48 (5): 997-1015.
    Dickey, D. A., & Fuller, W. A., 1979, “Distribution of the estimators for autoregressive time series with a unit root.”, Journal of the American statistical association, 74(366a): 427-431.
    Drake, L., 1995, “Testing for convergence between UK regional house prices.” Regional Studies, 29(4): 357-366.
    Efthymiou, D., & Antoniou, C., 2013, “How do transport infrastructure and policies affect house prices and rents? Evidence from Athens, Greece.”, Transportation Research Part A: Policy and Practice, 52: 1-22.
    Engle, R. F., & Granger, C. W., 1987, “Co-integration and error correction: representation, estimation, and testing.” Econometrica: journal of the Econometric Society, 251-276.
    Gabbe, C. J., 2019, “Local regulatory responses during a regional housing shortage: An analysis of rezonings in Silicon Valley.”, Land Use Policy, 80: 79-87.
    Giussani, B., & Hadjimatheou, G., 1991, “Modeling regional house prices in the United Kingdom.”, Papers in Regional Science, 70(2): 201-219.
    Gray, D., 2012. “District house price movements in England and Wales 1997–2007: An exploratory spatial data analysis approach.” Urban Studies, 49(7): 1411-1434.
    Güneralp, B., Seto, K. C., & Ramachandran, M., 2013, “Evidence of urban land teleconnections and impacts on hinterlands.”, Current Opinion in Environmental Sustainability, 5(5): 445-451.
    Guo, J., & Qu, X., 2018, “Spatial interactive effects on housing prices in Shanghai and Beijing.”, Regional Science and Urban Economics.
    Herrin, W. E., Knight, J. R., & Sirmans, C. F., 2004, “Price cutting behavior in residential markets.”, Journal of housing economics, 13(3): 195-207.
    Holly, S., Pesaran, M. H., & Yamagata, T., 2011, “The spatial and temporal diffusion of house prices in the UK.”, Journal of Urban Economics, 69(1): 2-23.
    Hui, H. C., 2010, “House price diffusions across three urban areas in Malaysia.”, International journal of housing markets and analysis, 3(4): 369-379.
    Jaeger, W. K., Plantinga, A. J., & Grout, C., 2012, “How has Oregon`s land use planning system affected property values?.”, Land Use Policy, 29(1): 62-72.
    Johansen, S., 1988, “Statistical analysis of cointegration vectors.” Journal of economic dynamics and control, 12(2-3): 231-254.
    Lancaster, K. J., 1966, “A new approach to consumer theory.”, Journal of political economy, 74(2): 132-157.
    Landis, J. D., 2006, “Growth management revisited: Efficacy, price effects, and displacement.”, Journal of the American Planning Association, 72(4): 411-430.
    Lee, M. T., Lee, M. L., & Lin, S. H., 2014, “Trend properties, cointegration, and diffusion of presale house prices in Taiwan: Can Taipei`s house prices ripple out?.”, Habitat International, 44: 432-441.
    Liang, X., Liu, Y., Qiu, T., Jing, Y., & Fang, F., 2018, “The effects of locational factors on the housing prices of residential communities: The case of Ningbo, China.”, Habitat International, 81: 1-11.
    Luo, Z. Q., Liu, C., & Picken, D., 2007, “Housing price diffusion pattern of Australia`s state capital cities.”, International Journal of Strategic Property Management, 11(4): 227-242.
    MacDonald, R., & Taylor, M. P., 1993, “Regional house prices in Britain: long‐run relationships and short‐run dynamics.”, Scottish Journal of Political Economy, 40(1): 43-55.
    Mark, J. H., & Goldberg, M. A., 1984, “Alternative housing price indices: an evaluation.”, Real Estate Economics, 12(1): 30-49.
    Meen, G., 1996, “Spatial aggregation, spatial dependence and predictability in the UK housing market.”, Housing studies, 11(3): 345-372.
    Meen, G., 1999, “Regional house prices and the ripple effect: a new interpretation.”, Housing studies, 14(6): 733-753.
    Nanda, A. & Yeh, J. H., 2014, “Spatio-temporal diffusion of residential land prices across Taipei regions.” SpringerPlus, 3(1): 505.
    Oikarinen, E., 2004, “The diffusion of housing price movements from center to surrounding areas.” Journal of Housing Research, 15(1): 3-28.
    Pollakowski, H. O., & Ray, T. S., 1997, “Housing price diffusion patterns at different aggregation levels: an examination of housing market efficiency.”, Journal of Housing Research, 8(1): 107-124.
    Quigley, J. M., & Raphael, S., 2005, “Regulation and the high cost of housing in California.”, American Economic Review, 95(2): 323-328.
    Rosen, S., 1974, “Hedonic prices and implicit markets: product differentiation in pure competition.”, Journal of political economy, 82(1): 34-55.
    Seto, K. C., Reenberg, A., Boone, C. G., Fragkias, M., Haase, D., Langanke, T., Marcotullio, P., Munroe, D. K., Olah, B. & Simon, D., 2012, “Urban land teleconnections and sustainability.”, Proceedings of the National Academy of Sciences, 109(20): 7687-7692.
    Teye, A. L., Knoppel, M., de Haan, J., & Elsinga, M. G., 2017, “Amsterdam house price ripple effects in The Netherlands.”, Journal of European Real Estate Research, 10(3): 331-345.
    Tiebout, C. M., 1956, “A pure theory of local expenditures.”, Journal of political economy, 64(5): 416-424.
    Tversky, A., & Kahneman, D., 1974, “Judgment under uncertainty: Heuristics and biases.”, science, 185(4157): 1124-1131.
    Wen, H., Xiao, Y., & Zhang, L., 2017, “School district, education quality, and housing price: Evidence from a natural experiment in Hangzhou, China.”, Cities, 66: 72-80.
    Yu, Y., Feng, K. & Hubacek, K., 2013, “Tele-connecting local consumption to global land use.” Global Environmental Change, 23(5): 1178-1186.
    Zhang, L., Hui, E. C., & Wen, H., 2017, “The regional house prices in China: Ripple effect or differentiation.”, Habitat International, 67: 118-128.
    3. 其他
    Abraham, J. M., & Hendershott, P. H., 1994, “Bubbles in metropolitan housing markets” (No. w4774), National Bureau of Economic Research.
    Oikarinen, E., 2005, “Is housing overvalued in the Helsinki metropolitan area?” (No. 992), ETLA Discussion Papers, The Research Institute of the Finnish Economy (ETLA).
    網頁參考文獻
    財團法人國家政策研究基金會,取用日期:2018年11月13日
    https://www.npf.org.tw/
    內政部主計處,取用日期:2018年11月15日
    https://www.moi.gov.tw/stat/index.aspx
    內政部戶政司,2018年11月15日
    https://www.ris.gov.tw/app/portal
    內政部不動產資訊平台,取用日期:2018年11月16日
    http://pip.moi.gov.tw/V2/Default.aspx
    國政研究報告,取用日期:2018年11月29日
    https://www.npf.org.tw/2/1843
    描述: 碩士
    國立政治大學
    地政學系
    106257021
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0106257021
    数据类型: thesis
    DOI: 10.6814/NCCU201900584
    显示于类别:[地政學系] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    702101.pdf2186KbAdobe PDF2105检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈