Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/124729
|
Title: | 卷積神經網路結合投資組合理論之交易策略實證研究: 以台灣股市為例 The Empirical Research of Trading Strategies for Convolutional Neural Network and Portfolio Theory on Taiwan Stock Market |
Authors: | 莊承勳 Chuang, Cheng-Hsun |
Contributors: | 廖四郎 Liao, Szu-Lang 莊承勳 Chuang, Cheng-Hsun |
Keywords: | 量化交易 卷積神經網路 投資組合 平均-變異數分析 動能交易 |
Date: | 2019 |
Issue Date: | 2019-08-07 16:10:36 (UTC+8) |
Abstract: | 本研究從台灣前60大市值比上市公司中,挑出49家公司為樣本,蒐集2006-2018間的資料,採用技術指標作為變數,以卷積神經網路預測為選股策略,選取投資組合成分股, 再利用「平均-變異數」分析配置權重,並根據不同風險趨避程度,建構不同投組。結果卷積神經網路的投資策略,在訓練樣本期間(2010~2016年)內的績效表現相當好,但應用在樣本外期間(2008~2009年,2017~2018年)則表現不佳。若使用此種交易策略與簡單動能策略比較,則動能策略建構的投資組合能在訓練樣本外期間表現的較佳。 This Research selects 49 companies from the top 60 companies in Taiwan as a sample, collects stock data from 2006 to 2018. Choose technical indicators as variables, and use convolutional neural network prediction as a stock selection strategy to form a portfolio. In the selected stocks, the “Mean-Variance Analysis” is used to allocate the asset weights, and different investment groups are constructed according to different risk aversion levels. The result of this study shows that: the investment strategy of the convolutional neural network is quite good during the training period (2010~2016) of data. However, the strategy make negative return during the out-of-sample period (2008-2009, 2017~2018). With this performance, compare to a simple momentum strategy, the momentum portfolio can perform better during the out-of-sample period. |
Reference: | [1] 王春峰、屠新曙、厉斌(2002),效用函数意义下投资组合有效选择问题的研究,中国管理科学,第10卷第2期,4月,頁15-19。 [2] 李顯儀、吳幸姬(2009),技術分析資訊對共同基金從眾行為的影響,臺大管理論叢,第20卷第1期,12月,頁227-260。 [3] 陳嘉惠、高郁惠、劉玉珍(2002),投資人偏好與資產配置。臺灣管理學刊,第1卷第2期,2月,頁213-232。 [4] 詹錦宏、吳莉禎(2011),動能投資策略於台灣股票市場之應用—含金融海嘯之影響,會計學報,第3卷第2期,5月,頁1-22。 [5] Allen, F. & R. Karjalainen (1999). ‘‘Using Genetic Algorithms to Find Technical Trading Rules,’’ Journal of Financial Economics, 51, 245-271. [6] Bai, S., J. Kolter & V. Koltun (2018). ‘‘An empirical evaluation of generic convolutional and recurrent networks for sequence modeling,’’ Retrieved from https://arxiv.org/abs/1803.01271. [7] Bodie, Z., A. Kane & A. Marcus (1999). Investments, 4th ed. McGraw-Hill Companies, 178-193. [8] Cesarone, F., A. Scozzari & F. Tardella (2010). ‘‘Portfolio selection problems in practice: a comparison between linear and quadratic optimization models,’’ Retrieved from https://arxiv.org/abs/1105.3594 [9] De Bondt, W. & R. Thaler (1985). ‘‘Does the Stock Market Overreact?,’’ Journal of Finance, 40, 793-805. [10] Jegadeesh, N. & S. Titman (1993). ‘‘Returns to Buying Winners and Selling Losers: Implications for Market Efficiency,’’ Journal of Finance, 48, 65-91. [11] LeCun, Y., L. Bottou, Y. Bengio & P. Haffner (1998). ‘‘Gradient-based learning applied to document recognition,’’ Proc. IEEE, 86, 2278-2324. [12] Lo, A. W. and A. C. MacKinlay (1990). ‘‘When Are Contrarian Profits Due to Stock Market-Overreaction,’’ Review of Financial Studies, 3, 175-208. [13] Markowitz, H. (1952). ‘‘Portfolio Selection,’’ Journal of Finance 7, 77-91. [14] Thawornwong, S., D.Enke & C. Dagli (2003). ‘‘Neural Networks as a Decision Maker for Stock Trading: A Technical Analysis Approach,’’ International Journal of Smart Engineering System Design, 5(4), 313-325. [15] Vejendla, A. & D. Enke (2013). ‘‘Evaluation of GARCH, RNN and FNN Models for Forecasting Volatility in the Financial Markets,’’ Journal of Financial Risk Management, 10(1), 41-49. [16] White, H. (1988). ‘‘Economic prediction using neural networks: the case of IBM daily stock returns,’’ Proc. IEEE int. conf. on neural networks, 2, 451-458. [17] Wood, D. & B. Dasgupta (1996). ‘‘Classifying trend movements in the MSCI U.S.A. capital market index-A comparison of regression, arima and neural network methods,’’ Computers & Operations Research, 23 , 611-622. |
Description: | 碩士 國立政治大學 金融學系 106352017 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G0106352017 |
Data Type: | thesis |
DOI: | 10.6814/NCCU201900301 |
Appears in Collections: | [金融學系] 學位論文
|
Files in This Item:
File |
Size | Format | |
201701.pdf | 3497Kb | Adobe PDF2 | 0 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|