Reference: | [1] Altukife, F. S. (2003). A new nonparametric control chart based on the observations exceeding the grand median. Pakistan journal of statistics-all series, 19(3), pp. 343-352. [2] Amin, R. W., Reynolds Jr, M. R., & Saad, B. (1995). Nonparametric quality control charts based on the sign statistic. Communications in Statistics-Theory and Methods, 24(6), pp. 1597-1623. [3] Amin, R. W., & Widmaier, O. (1999). Sign control charts with variable sampling intervals. Communications in Statistics-Theory and Methods, 28(8), pp. 1961-1985. [4] Aparisi, F. (1996). Hotelling`s T2 control chart with adaptive sample sizes. International Journal of Production Research, 34(10), pp. 2853-2862. [5] Aparisi F, Jabaloyes J, Carrion A. Statistical properties of the |S| multivariate control chart. Communications in Statistics—Theory and Methods 1999; 28:2671–2686. [6] Aparisi F, Jabaloyes J, Carrion A. Generalized variance chart design with adaptive sample sizes. The bivariate case. Communications in Statistics—Simulation and Computation 2001; 30:931–948. [7] Bakir, S. T. (2004). A distribution-free Shewhart quality control chart based on signed-ranks. Quality Engineering, 16(4), pp. 613-623. [8] Bakir, S. T. (2006). Distribution-free quality control charts based on signed-rank-like statistics. Communications in Statistics-Theory and Methods, 35(4), pp. 743-757. [9] Bell, R. C., Jones-Farmer, L. A., & Billor, N. (2014). A distribution-free multivariate phase I location control chart for subgrouped data from elliptical distributions. Technometrics, 56(4), pp. 528-538. [10] Capizzi, G., & Masarotto, G. (2017). Phase I distribution-free analysis of multivariate data. Technometrics, 59(4), pp. 484-495. [11] Chakraborti, S., Van der Laan, P., & Bakir, S. T. (2001). Nonparametric control charts: an overview and some results. Journal of Quality Technology, 33(3), pp. 304-315. [12] Chen, N., Zi, X., & Zou, C. (2016). A distribution-free multivariate control chart. Technometrics, 58(4), pp. 448-459. [13] Chowdhury, S., Mukherjee, A., & Chakraborti, S. (2014). A new distribution‐free control chart for joint monitoring of unknown location and scale parameters of continuous distributions. Quality and Reliability Engineering International, 30(2), pp. 191-204. [14] Costa, A. F. (1997). X chart with variable sample size and sampling intervals. Journal of Quality Technology, 29(2), pp. 197-204.
[15] Crosier, R. B. (1988). Multivariate generalizations of cumulative sum quality-control schemes. Technometrics, 30(3), 291-303. [16] Epprecht, E. K., Aparisi, F., & Ruiz, O. (2018). Optimum variable-dimension EWMA chart for multivariate statistical process control. Quality Engineering, 30(2), pp. 268-282. [17] Farokhnia, M., & Niaki, S. T. A. (2019). Principal component analysis-based control charts using support vector machines for multivariate non-normal distributions. Communications in Statistics-Simulation and Computation, pp. 1-24. [18] Ferrell, E. B. (1953). Control charts using midranges and medians. Industrial Quality Control, 9(5), pp. 30-34. [19] Grasso, M., Colosimo, B. M., Semeraro, Q., & Pacella, M. (2015). A comparison study of distribution‐free multivariate SPC methods for multimode data. Quality and Reliability Engineering International, 31(1), pp. 75-96. [20] Hawkins, D. M. (1991). Multivariate quality control based on regression-adiusted variables. Technometrics, 33(1), 61-75. [21] Hotelling, H. A. R. O. L. D. (1947). Multivariate quality control. Techniques of statistical analysis. McGraw-Hill, New York. [22] Li, Z., Zhang, J., & Wang, Z. (2010). Self-starting control chart for simultaneously monitoring process mean and variance. International Journal of Production Research, 48(15), pp. 4537-4553. [23] Li, J., Tsung, F., & Zou, C. (2014). Multivariate binomial/multinomial control chart. IIE Transactions, 46(5), pp. 526-542. [24] Li, C., Mukherjee, A., Su, Q., & Xie, M. (2016). Robust algorithms for economic designing of a nonparametric control chart for abrupt shift in location. Journal of Statistical Computation and Simulation, 86(2), pp. 306-323. [25] Liang, W., Xiang, D., & Pu, X. (2016). A robust multivariate EWMA control chart for detecting sparse mean shifts. Journal of Quality Technology, 48(3), pp. 265-283. [26] Liu, R. Y. (1995). Control charts for multivariate processes. Journal of the American Statistical Association, 90(432), pp. 1380-1387. [27] Liu, R. Y., & Tang, J. (1996). Control charts for dependent and independent measurements based on bootstrap methods. Journal of the American Statistical Association, 91(436), pp. 1694-1700. [28] Liu, R. Y., Singh, K., & Teng, J. H. (2004). DDMA-charts: nonparametric multivariate moving average control charts based on data depth. Allgemeines Statistisches Archiv, 88(2), pp. 235-258.
[29] Liu, L., Zi, X., Zhang, J., & Wang, Z. (2013). A sequential rank-based nonparametric adaptive EWMA control chart. Communications in Statistics-Simulation and Computation, 42(4), pp. 841-859. [30] Liu, L., Tsung, F., & Zhang, J. (2014). Adaptive nonparametric CUSUM scheme for detecting unknown shifts in location. International Journal of Production Research, 52(6), pp. 1592-1606. [31] Liu, L., Chen, B., Zhang, J., & Zi, X. (2015). Adaptive phase II nonparametric EWMA control chart with variable sampling interval. Quality and Reliability Engineering International, 31(1), pp. 15-26. [32] Lowry, C. A., Woodall, W. H., Champ, C. W., & Rigdon, S. E. (1992). A multivariate exponentially weighted moving average control chart. Technometrics, 34(1), 46-53. [33] Lowry, C. A., & Montgomery, D. C. (1995). A review of multivariate control charts. IIE transactions, 27(6), 800-810. [34] Lu, S. L. (2015). An extended nonparametric exponentially weighted moving average sign control chart. Quality and Reliability Engineering International, 31(1), pp. 3-13. [35] MacGregor, J. F., & Kourti, T. (1995). Statistical process control of multivariate processes. Control Engineering Practice, 3(3), 403-414. [36] Mahadik, S. B., & Shirke, D. T. (2011). A special variable sample size and sampling interval Hotelling’s T 2 chart. The International Journal of Advanced Manufacturing Technology, 53(1-4), pp. 379-384. [37] Messaoud, A., Weihs, C., & Hering, F. (2004). A nonparametric multivariate control chart based on data depth (No. 2004, 61). Technical Report/Universität Dortmund, SFB 475 Komplexitätsreduktion in Multivariaten Datenstrukturen. [38] Montgomery, D. C., & Wadsworth, H. M. (1972, May). Some techniques for multivariate quality control applications. In ASQC Technical Conference Transactions, Washington, D. C (pp. 427-435). [39] Pignatiello Jr, J. J., & Runger, G. C. (1990). Comparisons of multivariate CUSUM charts. Journal of quality technology, 22(3), 173-186. [40] Qiu, P. (2008). Distribution-free multivariate process control based on log-linear modeling. IIE Transactions, 40(7), pp. 664-677. [41] Reynolds Jr, M. R. (1989). Optimal variable sampling interval control charts. Sequential Analysis, 8(4), pp. 361-379. [42] Roberts, S. W. (1959). Control chart tests based on geometric moving averages. Technometrics, 1(3), pp. 239-250.
[43] Sabahno, H., Amiri, A., & Castagliola, P. (2018). Optimal performance of the variable sample sizes Hotelling’s T 2 control chart in the presence of measurement errors. Quality Technology & Quantitative Management, pp. 1-25. [44] Shewhart, W. A. (1924). Some applications of statistical methods to the analysis of physical and engineering data. Bell System Technical Journal, 3(1), pp. 43-87. [45] Shokrizadeh, R., Saghaei, A., & Amirzadeh, V. (2018). Optimal design of the variable sampling size and sampling interval variable dimension T2 control chart for monitoring the mean vector of a multivariate normal process. Communications in Statistics-Simulation and Computation, 47(2), pp. 329-337. [46] Shu, L., & Fan, J. (2018). A distribution‐free control chart for monitoring high‐dimensional processes based on interpoint distances. Naval Research Logistics (NRL), 65(4), pp. 317-330. [47] Tagaras, G. (1998). A survey of recent developments in the design of adaptive control charts. Journal of quality technology, 30(3), pp. 212-231. [48] Tang, A., Castagliola, P., Hu, X., & Sun, J. (2019). The adaptive EWMA median chart for known and estimated parameters. Journal of Statistical Computation and Simulation, 89(5), pp. 844-863. [49] Tracy, N. D., Young, J. C., & Mason, R. L. (1992). Multivariate control charts for individual observations. Journal of quality technology, 24(2), 88-95. [50] Tran, P. H., Tran, K. P., Huong, T. T., Heuchenne, C., Nguyen, T. A. D., & Do, C. N. (2018, February). A Variable Sampling Interval EWMA Distribution-Free Control Chart for Monitoring Services Quality. In Proceedings of the 2018 International Conference on E-Business and Applications (pp. 1-5). ACM. [51] Wang, H., Huwang, L., & Yu, J. H. (2015). Multivariate control charts based on the James–Stein estimator. European Journal of Operational Research, 246(1), pp. 119-127. [52] Yang, S. F., Lin, J. S., & Cheng, S. W. (2011). A new nonparametric EWMA sign control chart. Expert systems with applications, 38(5), pp. 6239-6243. [53] Yang, S. F., Cheng, T. C., Hung, Y. C., & W. Cheng, S. (2012). A new chart for monitoring service process mean. Quality and Reliability Engineering International, 28(4), pp. 377-386. [54] Yang, S. F. (2016). An improved distribution-free EWMA mean chart. Communications in Statistics-Simulation and Computation, 45(4), pp. 1410-1427. [55] Yeh, A. B., Huwang, L., & Wu, Y. F. (2004). A likelihood-ratio-based EWMA control chart for monitoring variability of multivariate normal processes. IIE Transactions, 36(9), 865-879.
[56] Yue, J., & Liu, L. (2017). Multivariate nonparametric control chart with variable sampling interval. Applied Mathematical Modelling, 52, pp. 603-612. [57] Zhang, J., Zou, C., & Wang, Z. (2010). A control chart based on likelihood ratio test for monitoring process mean and variability. Quality and Reliability Engineering International, 26(1), pp. 63-73. [58] Zou, C., & Qiu, P. (2009). Multivariate statistical process control using LASSO. Journal of the American Statistical Association, 104(488), 1586-1596. [59] Zou, C., & Tsung, F. (2011). A multivariate sign EWMA control chart. Technometrics, 53(1), pp. 84-97. |