English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113311/144292 (79%)
Visitors : 50914250      Online Users : 575
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/124325


    Title: 數位轉型策略探討- 以POS機產業為例
    On the Strategy of Digital Transformation – Taking POS Device Industry for Example
    Authors: 鄒濟民
    Tsou, Chi-Ming
    Contributors: 2019智慧企業資訊應用發展國際研討會
    Keywords: 數位轉型、預測分析、預防維護
    Digital Transformation, Predictive Analytics, Preventive Maintenance
    Date: 2019-06
    Issue Date: 2019-07-17 15:03:40 (UTC+8)
    Abstract: 本研究針對POS機產業的案例公司探討該公司數位轉型的可行方案,調查顯示預防維護服務能減少客戶因機器故障所造成的損失。為了提供預防維護服務,公司需提升數據分析能力,並在組織上增加數據分析部門,培養數據分析人才,此為數位轉型的策略手段。有關預防維護的預測模型,本研究提出以出貨前的燒機數據建立基礎模型;然後蒐集出貨後的據點運作相關數據包括溫度、電流、頻率、當地室溫、濕度等大數據以及RMA 的回報檢測維修資料,並結合深度學習來修正基礎模型,以提升預測模型的準確率。
    This study takes the POS device industry as an example to explore the available approaches for digital transformation strategy. The survey results demonstrate the preventive maintenance services can reduce the loss of customers during device down time. In order to furnish the preventive maintenance services to customers, company should promote its data analytic capability and establish a data analytic department to train up data analysis expertise to fulfill the digital transformation initiatives. In terms of establishing the preventive maintenance predictive model, this study recommends a two-stages methodology including using before ex-factory burn-in data and adopting time series model to build up the basic model and then collecting site operation data including device temperature, device currency, local room temperature, local humidity and device maintenance RMA data etc. with deep learning method to increase the precision rate of the model.
    Relation: 2019智慧企業資訊應用發展國際研討會
    Data Type: conference
    Appears in Collections:[2019智慧企業資訊應用發展國際研討會] 會議論文

    Files in This Item:

    File Description SizeFormat
    5.pdf148KbAdobe PDF2206View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback