政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/122380
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113318/144297 (79%)
造訪人次 : 50958928      線上人數 : 921
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/122380
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/122380


    題名: 第三方維修服務商之保固產品動態故障率預測模式
    A Dynamic Failure Rate Forecasting Model of in-Warranty Products for Third-Party Repair Service Providers
    作者: 陳大愚
    Chen, Ta-Yu
    貢獻者: 林我聰
    許淳

    Lin, Woo-Tsong
    Sheu, Chwen

    陳大愚
    Chen, Ta-Yu
    關鍵詞: 綠色供應鏈管理
    逆物流
    第三方維修服務供應商
    故障率預測
    服務零件
    浴缸曲線理論
    馬可夫決策過程
    Green Supply Chains
    Reverse Logistics
    Third-Party Repair Service Providers
    Failure Rate Forecast
    Service Parts
    Bathtub Curve Theory
    Markov Decision Process
    日期: 2019
    上傳時間: 2019-03-04 19:30:51 (UTC+8)
    摘要: 本研究探討逆物流問題之一,即保固內產品的售後維修服務。售後維修服務對客戶服務和客戶滿意度至關重要。儘管如此,退回的不良產品數量的不確定性使得服務零件的預測和庫存規劃變得困難,這導致退回的不良產品積壓或零件庫存成本增加。基於浴缸曲線(Bathtub Curve, BTC)理論和馬可夫決策過程(Markov Decision Process, MDP),本研究發展了一個動態產品故障率預測(Product Failure Rate Forecast, PFRF)模型,使第三方維修服務提供商能夠有效預測服務零件的需求,從而減輕服務零件庫存過多或庫存不足的風險影響。本研究從一3C(電腦、通信和消費性電子)公司收集的數據進行模擬實驗,並進行敏感度分析以驗證所提出的模型,提出的PFRF模型優於先前研究的其他方法。考慮到每年推出的新產品數量,該模型可以節省大量的庫存成本。最後介紹了研究結果的管理意涵,並提出了未來研究的方向與建議。
    This study investigates one of the reverse logistics issues, after-sale repair service for in-warranty products. After-sale repair service is critical to customer service and customer satisfaction. Nonetheless, the uncertainty in the number of defective products returned makes forecasting and inventory planning of service parts difficult, which leads to a backlog of returned defectives or an increase in inventory costs. Based on Bathtub Curve (BTC) theory and Markov Decision Process (MDP), this study develops a dynamic product failure rate forecasting (PFRF) model to enable third-party repair service providers to effectively predict the demand for service parts and, thus, mitigate risk impacts of over- or under-stocking of service parts. A simulation experiment, based on the data collected from a 3C (computer, communication, and consumer electronics) firm, and a sensitivity analysis are conducted to validate the proposed model. The proposed model outperforms other approaches from previous studies. Considering the number of new products launched every year, the model could yield significant inventory cost savings. Managerial and research implications of our findings are presented, with suggestions for future research.
    參考文獻: Ahiska, S. S. (2008). Inventory Optimization in a One Product Recoverable Manufacturing System, Ph.D. Dissertation, North Carolina.

    Ahiska, S. S., & King, R. E. (2010a). Inventory optimization in a one product recoverable manufacturing system. International Journal of Production Economics, 124(1), 11-19.

    Ahiska S. S., & King, R. E. (2010b). Life cycle inventory policy characterization for a single-product recoverable system. International Journal of Production Economics, 124(1), 51-61.

    Ahiska, S. S., & King, R. E. (2015). Inventory policy characterisation methodologies for a single–product recoverable manufacturing system. European Journal of Industrial Engineering, 9(2), 222-243

    Akçali, E., & Çetinkaya, S. (2011). Quantitative models for inventory and production planning in closed-loop supply chains, International Journal of Production Research, 49(8), 2373-2407.

    Altay, N., & Litteral, L. A. (2011). Service Parts Management, Springer.

    Amsden, R. T. (2018). SPC simplified: practical steps to quality. Routledge.

    Asjad, M., Kulkarni, M, S., & Gandhi, O. P. (2014a). A conceptual framework for capturing supportability attributes of a mechanical system. International Journal of Services and Operations Management, 17(1), 107-118.

    Asjad, M., Kulkarni, M. S., & Gandhi, O. P. (2014b). Supportability perspectives: current practices and potential area for future research. International Journal of Industrial and Systems Engineering 17(2), 202-223.

    Bauch, G. T., & Chung, C. A. (2001). A statistical project control tool for engineering managers. Project Management Journal, 32(2), 37-44.

    Behfard, S., van der Heijden, M. C., Al Hanbali, A., & Zijm, W. H. M. (2015). Last time buy and repair decisions for spare parts. European journal of operational research, 244(2), 498-510.

    Bender, E. A. (2012). An introduction to mathematical modeling. Courier Corporation.

    Cachon, G. P., & Fisher, M. (2000). Supply chain inventory management and the value of shared information. Management science, 46(8), 1032-1048.

    Chopra, S., & Meindl, P. (2004). Supply Chain Management (2nd ed.). Upper Saddle River, NJ: Pearson Prentice Hall.

    Cohen, M. A., Pierskalla, W. P., & Nahmias, S. (1980). A dynamic inventory system with recycling. Naval Research Logistics Quarterly, 27(2), 289-296.

    Croston, J.D. (1972). Forecasting and Stock Control for Intermittent Demands. Operational Research Quarterly, 23(3), 289-303.

    De Giovanni, P., & Zaccour, G. (2014). A two-period game of a closed-loop supply chain. European Journal of Operational Research, 232(1), 22-40.

    Dekker, R., Pince, C., Zuidwijk, R., & Jalil, M. (2013). On the use of installed base information for spare parts logistics: review of ideas and industry practice. International Journal of Production Economics, 43(2), 536-545.

    Dowlatshahi, S. (2000). Developing a theory of reverse logistics. Interfaces, 30(3), 143-155.

    Flapper, S. D. P. (1996). One-way or reusable distribution items. In Proceedings of the Second International Conference on Computer Integrated Manufacturing in the Process Industries. The Netherlands: Eindhoven University of Technology (pp. 230-43).

    Fleischmann, M., Bloemhof-Ruwaard, J. M., Dekker, R., van der Laan, E., van Nunen, J. A., & van Wassenhove, L. N. (1997). Quantitative models for reverse logistics: A review. European journal of operational research, 103(1), 1-17.

    Fleischmann, M. (2001). Quantitative models for reverse logistics: Lecture notes in Economics and Mathematical Systems. Springer, Berlin Germany.

    Fleischmann, M., van Nunen, J., & Gräve , B. (2003). Integrated closed-loop supply chains and spare parts management at IBM. Interface, 33(6), 44-56.

    Galton, F. (1989). Kinship and Correlation (reprinted 1989). Statistical Science (Institute of Mathematical Statistics) 4 (2): 80–86.doi:10.1214/ss/1177012581. JSTOR 2245330

    Gharbi, A., Pellerin, R., Sadr, J. (2008). Production rate control for stochastic remanufacturing systems, Int. J. Production Economics 112 (2008) 37-47.

    Gilson, C (1973). Convenience-package banning: economic and environmental implications. Academy of Marketing Science Journal, 1(1), 75–79

    Ginsburg. J. (2001). Once is not enough. BusinessWeek. 16 April 2001.

    Giuntini, R., Gaudette, K. (2003). Remanufacturing: The next great opportunity for boosting US productivity. Business Horizons, pp. 41–48.

    Gou, Q., Liang, L., Huang, Z., & Xu, C. (2008). A joint inventory model for an open-loop reverse supply chain. International Journal of Production Economics, 116(1), 28-42.

    Guide, V. D. R. (2000). Production planning and control for remanufacturing: industry practice and research needs. Journal of Operations Management, 18(4), 467-483.

    Guin, U., Huang, K., DiMase, D., Carulli, J. M., Tehranipoor, M., & Makris, Y. (2014).
    Counterfeit Integrated Circuits: A Rising Threat in the Global Semiconductor Supply Chain. Proceedings of the IEEE, 102(8), 1207-1228.

    Hanna, M.E., Render, B., & Stair, R. (2012). Quantitative Analysis for Management. Pearson.

    Harris, F. W. (1913). How many parts to make at once. Factory, The Magazine of Management, 10(2), 135-136, 152.

    Hartzell, A. L., da Silva, M.G., & Shea, H. (2011). MEMS Reliability; Springer: Berlin, Germany.

    Hauser, W., & Lund, R. T. (2003). The remanufacturing industry: anatomy of a giant. Department of Manufacturing Engineering, Boston University.

    Heyman, D. P. (1977). Optimal disposal policies for a single‐item inventory system with returns. Naval Research Logistics Quarterly, 24(3), 385-405.

    Hsueh, C. F. (2011). An inventory control model with consideration of remanufacturing and product life cycle, International Journal of Production Economics, 133(2), 645-652.

    Huston, H. H., & Clarke, C. P. (1992). Reliability defect detection and screening during processing-theory and implementation,`` in Proceedings IEEE International Reliability Physics Symposium (IRPS), pp. 268-275.

    Inderfurth, K. (1997). Simple optimal replenishment and disposal policies for a product recovery system with leadtimes. Operations-Research-Spektrum, 19(2), 111-122.

    Inderfurth, K., & van der Laan, E. (2001). Leadtime effects and policy improvement for stochastic inventory control with remanufacturing, International Journal of Production Economics, 71 (1-3), 381-390.

    International Data Corporation (IDC). IDC Quarterly Personal Computing Device Tracker; IDC: Framingham, MA, USA, 2018.

    Jalil, M. N., Zudiwijk, R. A., & Fleischmann, M. (2011), Spare parts logistics and installed base information. Journal of Operational Research Society, Vol. 62, Vol. 3, pp. 442-457.

    Jayaraman, V. (2006). Production planning for closed-loop supply chains with product recovery and reuse: an analytical approach. International Journal of Production Research, 44(5), 981-998.

    Kabir, A. Z., & Al-Olayan, A. S. (1996). A stocking policy for spare part provisioning under age based preventive replacement. European Journal of Operational Research, 90(1), 171-181.

    Kelle, P., & Silver, E.A. (1989). Purchasing policy of new containers considering the random returns of previously issued containers. IIE Transactions, 21(4), 349-354.

    Khare, V., Khare, C., & Nema, S. (2018). Tidal Energy Systems: Design, Optimization and Control. Elsevier.

    Kiesmüller, G. P. (2003). A new approach for controlling a hybrid stochastic manufacturing/remanufacturing system with inventories and different leadtimes. European Journal of Operational Research, 147(1), 62-71.

    Kiesmüller, G. P., & Minner, S. (2003). Simple expressions for finding recovery system inventory control parameter values. Journal of the Operational Research Society, 54(1), 83-88.

    Klutke, G. A., Kiessler, P. C., & Wortman, M. A. (2003). A critical look at the bathtub curve. IEEE Transactions on Reliability, 52(1), 125-129.

    Kopicki, R., Berg, M. J., & Legg, L. (1993). Reuse and recycling-reverse logistics opportunities. United States: N. p., 1993. Web.

    Krapp, M., Nebel, J., & Sahamie, R. (2013). Forecasting product returns in closed-loop supply chains. International Journal of Physical Distribution and Logistics Management, 43(8), 614-637.

    Krumwiede, D. W., & Sheu, C. (2002). A model of reverse logistics entry by third-party providers. Omega, 30(5), 325–333.

    Law, A. M. (2015). Simulation modeling and analysis, 5th Edition. New York: McGraw-Hill.

    Lee, H. L., & Whang, S. (2000). Information sharing in a supply chain. International Journal of Technology Management, Vol. 1, No. 1, pp. 79-93.

    Li, C. (2013). An integrated approach to evaluating the production system in closed-loop supply chains. International Journal of Production Research, 51(13), 4045-4069.

    Li, Y., Ye, F. & Sheu, C. (2014). Social capital, information sharing and performance: Evidence from China. International Journal of Operations & Production Management, 34(11), 1440-1462.

    Lilien, G. L., & Grewal, R. (2012). Handbook on Business to Business Marketing, Edward Elgar Pub.

    Lin, W. T., Chen, T. Y. (2014). A Shared Information-based Petri Net Model for Service Parts Planning. The Fourteenth International Conference on Electronic Business, Taipei, Taiwan, (pp. 8-12).

    Lucy, T. (2007). Costing. (5th Ed.). D.P. Publications, London.

    Ma, Z. J., Zhou, Q., Dai, Y., & Guan, G. F. (2018). To License or Not to License Remanufacturing Business?. Sustainability, 10(2), 347.

    Mabini, M. C., Pintelon, L. M., & Gelders, L. F. (1992). EOQ type formulations for controlling repairable inventories, International Journal of Production Economics, 28(1), 21-33.

    Marion, G. (2008). An Introduction to Mathematical Modelling. Bioinformatics and Statistics Scotland.

    Matsumoto, M., & Komatsu, S. (2015). Demand forecasting for production planning in remanufacturing. The International Journal of Advanced Manufacturing Technology, 79(1-4), 161-175.

    Minner, S., & Kleber, R. (2001). Optimal control of production and remanufacturing in a simple recovery model with linear cost functions. OR-Spektrum, 23(1), 3-24.

    Mogull, Robert G. (2004). Second-Semester Applied Statistics. Kendall/Hunt Publishing Company. p. 59. ISBN 0-7575-1181-3.

    Muckstadt, J. A. (2004). Analysis and Algorithms for Service Parts Supply Chains. Springer Science & Business Media.

    Muckstadt, J. A., & Isaac, M. H. (1981). An analysis of single item inventory systems with returns. Naval Research Logistics Quarterly, 28(2), 237-254.

    Mutha, A., & Pokharel, S. (2009). Strategic network design for reverse logistics and remanufacturing using new and old product modules. Computers & Industrial Engineering, 56(1), 334-346.

    Ohring, M. (1998). Reliability and Failure of Electronic Materials and Devices.
    Academic Press.

    Kleber, R. (2006). Dynamic Inventory Management in Reverse Logistics. Springer-Verlag Berlin Heidelberg.

    Reverse Logistics Magazine, Edition 20, 2009.

    Reverse Logistics Magazine, Edition 26, 2010.

    Richter, K. (1996). The EOQ repair and waste disposal model with variable setup numbers. European Journal of Operational Research, 95(2), 313-324.

    Richter, K., & Gobsch, B. (2003). The market-oriented dynamic product recovery model in the just-in-time framework. International Journal of Production Economics, 81(82) 369-374.

    Pellerin, R., Sadr, J., Gharbi, A., & Malhame, R. (2009). A production rate control policy for stochastic repair and remanufacturing systems. Int. J. Production Economics 121, 39-48.

    Puterman, M. L. (2014). Markov decision processes: discrete stochastic dynamic programming. John Wiley & Sons.

    Sarjono, H. (2014). The Calculation of Extra Carrying Cost (ECC) and Stock out Cost (SOC) to determine the Raw Material’s Optimal Arrival Lead Time. Applied Mathematical Sciences, 8(83), 4115-4124.

    Schary, P. (1977). Transportation rates and the recycling problem”, Transportation Journal, 16 (3), 46–56.

    Schrady, D. A. (1967). A deterministic inventory model for reparable items. Naval Research Logistics Quarterly, 14(3), 391-398.

    Schroeder, B., & Gibson, G. A. (2007). Disk failures in the real world: What does an MTTF of 1, 000, 000 hours mean to you?. In FAST, 7(1), 1-16.

    Pokharel, S., & Mutha, A. (2009). Perspectives in reverse logistics: A review. Resources, Conservation and Recycling, 53(1), 175 – 182.

    Spengler, T., & Schröter, M. (2003). Strategic management of spare parts in closed-loop supply chains—A system dynamics approach. Interfaces, 33(1), 7–17.

    Minner, S. (2011) Forecasting and Inventory Management for Spare Parts: An Installed Base Approach. Chapter 8 in: Service Parts management – Demand Forecasting and Inventory Control, pp. 157-169.

    Stevens, G. C. (1989). Integrating the supply chain. International Journal of Physical Distribution & Materials Management, 19(8), 3-8.

    Tang, O., & Teunter, R.H. (2006). Economic lot scheduling problem with returns. Production and Operations Management, 15(4), 488-497.

    Teunter, R., & van der Laan, E. (2002). On the non-optimality of the average cost approach for inventory models with remanufacturing, International Journal of Production Economics, 79(1), 67-73.

    Teunter, R., Tang, O., & Kaparis, K. (2009). Heuristics for the economic lot scheduling problem with returns. International Journal of Production Economics, 118(1), 323-330.

    Toffel, M. W. (2004). Strategic management of product recovery. California Management Review, 46(2), 120-141.

    Toktay, L. B., Wein, L. M., & Zenios, S. A. (2000). Inventory management of remanufacturable products. Management Science, 46(11), 1412-1426.

    Toktay, L. B., van der Laan, E. A., & de Brito, M. P. (2004). Managing product returns: the role of forecasting. In Reverse Logistics (pp. 45-64). Springer, Berlin, Heidelberg.

    van der Laan, E., & Salomon, M. (1997). Product planning and inventory control with remanufacturing and disposal. European Journal of Operational Research. 102(2), 264-278.

    van der Laan, E., Dekker, R., and Salomon, M. (1996). Product remanufacturing and disposal: A numerical comparison of alternative control strategies. International Journal of Production Economics, 45(1), 489-498.

    van der Laan, E., Salomon, M., & Dekker, R. (1999). An investigation of lead-time effects in manufacturing/remanufacturing systems under simple PUSH and PULL control strategies. European Journal of Operational Research, Vol. 115, No. 1, pp. 195-214.

    van der Laan, E., Salomon, M., & Dekker, R. (1999). An investigation of lead-time effects in manufacturing/remanufacturing systems under simple PUSH and PULL control strategies. European Journal of Operational Research, 115(1), 195-214.

    Viardot, E. (2004). Successful Marketing Strategy for High-tech Firms. Artech House; 3rd edition.

    Wagner, H. M., & Whitin, T. M. (1958). Dynamic version of the economic lot size model. Management science, 5(1), 89-96.

    Wagner, S. M., Jönke, R., & Eisingerich, A. B. (2012). A strategic framework for spare parts logistics. California Management Review, 54(4), 69-92.

    Whisler, W. (1967). A stochastic inventory model for rented equipment. Management Science, 13(9), 40–647.

    Wilkins, D. J. (2002). The Bathtub Curve and Product Failure Behavior Part One—The Bathtub Curve, Infant Mortality and Burn-in. The eMagazine for Reliability Professional, 21(1), 1-6.

    Williamson, O.E. (1975). Markets and Hierarchies: Analysis and Antitrust Implications, New York: Free Press.

    Yan, W., Li, H., Chai, J., Qian, Z., & Chen, H. (2018). Owning or Outsourcing? Strategic Choice on Take-Back Operations for Third-Party Remanufacturing. Sustainability, 10(1), 151.

    Yao, Y., & Dresner, M. (2008). The inventory value of information sharing, continuous replenishment, and vendor-managed inventory. Transportation Research Part E: Logistics and Transportation Review, 44(3), 361-378.

    Yu, S. (2008). Internal Technical Report. Runservice Pte. Ltd.

    Zikmund, W., & Stanton, W. (1971). Recycling solid wastes: a channels-of-distribution problem. Journal of Marketing, 35, 34–39

    (online) https://www.questia.com/library/journal/1G1-15424571/making-profits-after-the-sale Thomas Knecht, Ralf Leszinski, Flex A. Weber, Making profits after the sale, The McKinsey Quarterly, No. 4, Autumn 1993. (Accessed 12 December 2015).

    (online) http://www.statista.com/statistics/272595/global-shipments-forecast-for-tablets-laptops-and-desktop-pcs. (Accessed 13 December 2015).

    (online)
    Statista, Shipment Forecast of Laptops, Desktop PCs and Tablets Worldwide from 2010 to 2020. Available online: http://www.statista.com/statistics/272595/global-shipments-forecast-for-tablets-laptops-and-desktop-pcs. (Accessed 28 April 2017).


    (online)
    Speaks, S., Reliability and MTBF Overview. Victor Reliability Engineering. Available online: www.vicorpower.com/documents/quality/Rel_MTBF.pdf (Accessed 28 April 2017).

    (online) Gray, J., Roth, A., & Tomlin, B., 2007. Quality risk in outsourcing: evidence from the US drug industry. Available online: http://mackcenter.wharton.upenn.edu/TMiniPapers07/Gray_Roth_Tomlin_QualityRiskInOutsourcing.pdf. (Accessed 16 December 2014).
    描述: 博士
    國立政治大學
    資訊管理學系
    101356501
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0101356501
    資料類型: thesis
    DOI: 10.6814/DIS.NCCU.MIS.002.2019.A05
    顯示於類別:[資訊管理學系] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    650101.pdf2689KbAdobe PDF20檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋