English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113311/144292 (79%)
Visitors : 50933673      Online Users : 946
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/122238


    Title: Evolutionary Artificial Neural Networks and Genetic Programming: A Comparative Study Based on Financial Data
    Authors: 陳樹衡
    Chen, Shu-Heng
    Ni, C.-C.
    Contributors: 經濟學系學
    Date: 1998
    Issue Date: 2019-01-31 13:44:43 (UTC+8)
    Abstract: In this paper, the stock index S&P 500 is used to test the predicting performance of genetic programming (GP) and genetic programming neural networks (GPNN). While both GP and GPNN are considered universalapproximators, in this practical financial application, they perform differently. GPNN seemed to suffer the overlearning problem more seriously than GP; the latter outdid the former in all the simulations.
    Relation: Artificial Neural Nets and Genetic Algorithms pp 397-400
    Data Type: book/chapter
    DOI 連結: https://doi.org/10.1007/978-3-7091-6492-1_87
    DOI: 10.1007/978-3-7091-6492-1_87
    Appears in Collections:[經濟學系] 專書/專書篇章

    Files in This Item:

    File Description SizeFormat
    6492-1_87.pdf675KbAdobe PDF2308View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback