政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/121742
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文笔数/总笔数 : 113318/144297 (79%)
造访人次 : 51081828      在线人数 : 913
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜寻范围 查询小技巧:
  • 您可在西文检索词汇前后加上"双引号",以获取较精准的检索结果
  • 若欲以作者姓名搜寻,建议至进阶搜寻限定作者字段,可获得较完整数据
  • 进阶搜寻


    请使用永久网址来引用或连结此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/121742


    题名: 結合變數挑選和混頻方法當下預測通膨
    Nowcasting Inflation by Combining Variable Selection and Mixed Frequency Methods
    作者: 袁瑋成
    Yuan, Wei-Cheng
    贡献者: 林馨怡
    Lin, Hsin-Yi
    袁瑋成
    Yuan, Wei-Cheng
    关键词: 混頻
    變數挑選
    通貨膨脹率
    日期: 2018
    上传时间: 2019-01-04 16:58:02 (UTC+8)
    摘要: 本文結合變數挑選與混頻(Mixed frequency)方法,提出兩步驟預測模型,並考慮大量且不同頻率的經濟變數當下預測美國通貨膨脹率。以美國1998年7月到2018年5月的實證結果顯示,加上變數挑選後的混頻模型,其預測表現顯著比無變數挑選的混頻模型好,且僅用少數個挑選出的變數組合預測可以更近一步改善模型的預測表現。而使用不同變數個數組合預測的混頻模型,其預測表現顯著比無混頻模型好,這表示以混頻方法將高頻率變數的資訊納入模型中確實能改善當下預測通膨的預測表現。我們亦發現僅使用少數重要的變數組合預測時,高頻率重要變數對預測表現的影響遠大於低頻率重要變數。此外,考慮不同的穩健性檢驗的結果顯示,本文所提之方法具有穩健性。
    參考文獻: 林馨怡與廖珈燕 (2017), ”大數據預測通貨膨脹率”, working paper.

    廖珈燕 (2016), ”大數據預測通貨膨脹率”, 政治大學經濟系碩士論文.

    吳若瑋 (2015), ”通貨膨脹率之預測”, 經濟論文 43(2): 253-285.

    Ang, A., Bekaert, G., and Wei, M., 2007. Do macro variables, asset markets, or surveys forecast inflation better? Journal of Monetary Economics, 54(4): 1163-1212.

    Aparicio, D., and Bertolotto, M., 2017. Forecasting Inflation with Online Prices,working paper. Aron, J., and Muellbauer, J., 2013. New methods for forecasting inflation: Applied to the US. Oxford Bulletin of Economics and Statistics 75(5): 637-661.

    Banbura, M., and Modugno, M., 2010. Maximum likelihood estimation of factor models on data sets with arbitrary pattern of missing data. European Central Bank Working paper,1189.

    Breitung, J., and Roling, C., 2015. Forecasting inflation rates using daily data: A nonparametric MIDAS approach. Journal of Forecasting 34(7): 588-603.

    Carriere-Swallow, Y., and Labbe, F. 2013. Nowcasting with Google trends in an emerging market. Journal of Forecasting 32(4): 289-298.

    Carriero, A., Clark, T.E., and Marcellino, M., 2015. Realtime nowcasting with a bayesian mixed frequency model with stochastic volatility. Journal of the Royal Statistical Society 178(4): 837-862.

    Clements, M.P., and Galva o, A.B., 2008. Macroeconomic forecasting with mixed frequency data: Forecasting output growth in the United States. Journal of Business and Economic Statistics 26(4): 546–554.

    Cristadoro, R., Saporito, G.,and Venditti, F. 2008. Forecasting inflation and tracking monetary policy in the euro area: Does national information help? ECB Working Paper, No.900.

    Diebold, F. X., and Mariano, R. S., 1995. Comparing predictive accuracy. Journal of Business & Economic Statistics 13(3): 253–263.

    Filippo, G.D. 2015. Dynamic model averaging and CPI inflation forecasts: A comparison between the Euro area and the United States. Journal of Forecasting 34: 619-648.

    Garcia, M.G.P., Medeiros, M.C., and Vasconcelos, G.F.R. 2017. Real-time inflation forecasting with high-dimensional models: The case of Brazil. International Journal of Forecasting 33: 679-693.

    Giannone, D., Lenza, M., Momferatou, D., and Onorante, L. 2014. Short-term inflation projections: A bayesian vector autoregressive approach. International Journal of Forecasting 30(3): 635- 644.

    Ghysels, E., Santa-Clara, P.,and Valkanov, R. 2004. The MIDAS touch: Mixed data sampling regression models. CIRANO Working Papers 2004s-20, CIRANO.

    Lenza, M. and Thomas, T. 2011. A factor model for Euro-area short-term inflation analysis Journal of Economics and Statistics 231(1): 50-62.

    Modugno, M. 2013. Now-casting inflation using high frequency data. International Journal of Forecasting 29(4): 664-675.

    Monteforte, L., and Moretti, G. 2013. Real time forecasts of inflation: The role of financial variables. Journal of Forecasting 32(1): 51-61.

    Higgins, P., Zha, T.,and Zhong, W. 2016. Forecasting China’s economic growth and inflation. China Economic Review 41: 46-61.

    Seabold, S. 2015. Nowcasting prices using Google trends: An application to central America. World Bank Policy Research Working Paper, No.7398.

    Smith,P. 2016. Google’s MIDAS touch: Predicting UK unemployment with internet search data. Journal of Forecasting 35(3): 263-284.

    Stock, J. H., and Watson, M. W. 1999. Forecasting inflation. Journal of Monetary Economics 44: 293-335.

    Tibshirani, R. 1996. Regression shrinkage and selection via the LASSO. Journal of the Royal Statistical Society Series B (Statistical Methodology), 58: 267-288.

    Zou, H. and Hastie,T. Regularization and variable selection via the elastic net Journal of the Royal Statistical Society Series B(Statistical Methodology), 67(2): 301-320.
    描述: 碩士
    國立政治大學
    經濟學系
    105258019
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0105258019
    数据类型: thesis
    DOI: 10.6814/THE.NCCU.ECONO.024.2018.F06
    显示于类别:[經濟學系] 學位論文

    文件中的档案:

    档案 大小格式浏览次数
    801901.pdf1340KbAdobe PDF20检视/开启


    在政大典藏中所有的数据项都受到原著作权保护.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回馈