政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/121475
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51068424      Online Users : 920
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/121475


    Title: Experimental Study on Extreme Learning Machine Applications for Speech Enhancement
    Authors: Hussain, Tassadaq;Siniscalchi, Sabato Marco;Lees, Chi-Chun;Wang, Syu-Siang;Tsao, Yu;Liao, Wen-Hung
    廖文宏
    Liao, Wen-Hung
    Contributors: 資科系
    Keywords: Speech enhancement;artificial neural networks;extreme learning machine;hierarchical extreme learning machines
    Date: 2017
    Issue Date: 2018-12-22 11:56:37 (UTC+8)
    Abstract: In wireless telephony and audio data mining applications, it is desirable that noise suppression can be made robust against changing noise conditions and operates in real time (or faster). The learning effectiveness and speed of artificial neural networks are therefore critical factors in applications for speech enhancement tasks. To address these issues, we present an extreme learning machine (ELM) framework, aimed at the effective and fast removal of background noise from a single-channel speech signal, based on a set of randomly chosen hidden units and analytically determined output weights. Because feature learning with shallow ELM may not be effective for natural signals, such as speech, even with a large number of hidden nodes, hierarchical ELM (H-ELM) architectures are deployed by leveraging sparse auto-encoders. In this manner, we not only keep all the advantages of deep models in approximating complicated functions and maintaining strong regression capabilities, but we also overcome the cumbersome and time-consuming features of both greedy layer-wise pre-training and back-propagation (BP)-based fine tuning schemes, which are typically adopted for training deep neural architectures. The proposed ELM framework was evaluated on the Aurora-4 speech database. The Aurora-4 task provides relatively limited training data, and test speech data corrupted with both additive noise and convolutive distortions for matched and mismatched channels and signal-to-noise ratio (SNR) conditions. In addition, the task includes a subset of testing data involving noise types and SNR levels that are not seen in the training data. The experimental results indicate that when the amount of training data is limited, both ELM- and H-ELM-based speech enhancement techniques consistently outperform the conventional BP-based shallow and deep learning algorithms, in terms of standardized objective evaluations, under various testing conditions.
    Relation: IEEE Access , Volume 5 , Page 25542 - 25554
    Data Type: article
    DOI link: http://dx.doi.org/10.1109/ACCESS.2017.2766675
    DOI: 10.1109/ACCESS.2017.2766675
    Appears in Collections:[Department of Computer Science ] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML2623View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback