政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/121447
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113311/144292 (79%)
Visitors : 50935680      Online Users : 972
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/121447


    Title: Estimating multifactor portfolio credit risk: A variance reduction approach
    Authors: 謝明華
    Hsieh, Ming-Hua
    Lee, Yi-Hsi;Shyu, So-De;Chiu, Yu-Fen
    Contributors: 風管系
    Keywords: Portfolio credit risk;Monte Carlo simulation;Variance reduction;Importance sampling;Factor copula models
    Date: 2018
    Issue Date: 2018-12-19 16:36:05 (UTC+8)
    Abstract: The importance of credit markets in China and Asia Pacific has been increased significantly in the past decade and international regulation demands high standard in credit risk quantification for financial institutions. Computation for credit risk measures is a challenge problem. Hence this study aims to develop a fast Monte Carlo approach of estimating portfolio credit risk. The method could be applied to estimate the probability of large losses and the expected excess loss above a large threshold of a credit portfolio, which has a dependence structure driven by general factor copula models. Except for the assumption that a global common factor driving the default events of all defaultable obligors exists, the study does not impose any restrictions on the composition of the portfolio (e.g., stochastic recovery rates). Hence, this method can therefore be applied to a wide range of credit risk models. Numerical results demonstrate that the proposed method is efficient under general market conditions. In the high market impact condition, in credit contagion or market collapse environments, the proposed method is even more efficient.
    Relation: Pacific-Basin Finance Journal
    Data Type: article
    DOI link: https://doi.org/10.1016/j.pacfin.2018.08.001
    DOI: 10.1016/j.pacfin.2018.08.001
    Appears in Collections:[Department of Risk Management and Insurance] Periodical Articles

    Files in This Item:

    File Description SizeFormat
    PBFJ.pdf788KbAdobe PDF2391View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback