English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 114508/145535 (79%)
Visitors : 53512449      Online Users : 1247
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/120511
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/120511


    Title: Some Results on Path Pairs
    Authors: 劉洪鈞
    Contributors: 李陽明
    劉洪鈞
    Keywords: Path Pairs;Non - intersecting Paths
    Date: 2002
    Issue Date: 2018-10-11 11:50:48 (UTC+8)
    Abstract: In this thesis, our goal is to use mathematical induction to give a direct proof to show that the number of b(n - m, k ; n, k - m) is m/(n+k-m) ,where b(n – m, k; n, k - m) denotes the number of non-intersecting paths that the upper path goes from (0, 0) to(n - m, k) while the lower path goes from (0, 0) to (n, k - m). Furthermore, we conclude two applications about b(n-m, k ; n, k-m), namely b(n, k) (see Definition 2.2) and PP(n, k) (see Definition 4.4). We also bring up some open problems concerning our topics.
    Reference: References
    [1] Bessenrodt, C., “On hooks of Young diagrams”, Annals of Combinatorics 2 (1998), 103-110.
    [2] Franzblau, D. and Zeilberger, D., “A bijective proof of the hook-length formula”, Journal of Algorithms 3 (1982), 317-342.
    [3] Goulden, I. P. and Jackson, D. M., Combinatorial Enumeration, John Wiley & Sons, 1983.
    [4] Greene, C., Nijenhuis, A. and Wilf, H. S., “A probabilistic proof of a formula for the number of Young tableaux of a given shape”, Adv. in Math 31 (1979),104-109.
    [5] Grimaldi, Ralph P., Discrete and Combinatorial Mathematics: An Applied Introduction, 3nd ed., Addison-Wesley, 1994.
    [6] Hillman, A. P. and Grassl, R. M., “Reverse plane partition and tableau hook numbers”, Journal of Combinatorial Theory 21 (1976), 216-221.
    [7] Knuth, Donald E., “Permutations, matrices and generalized Young tableaux”, Pac. J. Math 34 (1970).
    [8] Knuth, Donald E., The Art Of Computer Programming, Vol. 3, Sorting and Searching, 2nd ed., Addison-Wesley, 1997.
    [9] Krattenthaler, C., “The major counting of nonintersecting lattice paths and generating functions for tableaux”, Memoirs of the American Mathematical Society (1995), Vol 115, Number 552.
    [10] Levine, J., “Note on the number of pairs of non-intersecting routes”, Scripta Mathematica 24 (1959), 335-338.
    [11] Liu, C. L., Introduction to Combinatorial Mathematics, McGraw-Hill, New York, 1968.
    [12] Narayana, T. V., Lattice path combinatorics with statistical applications, University of Toronto Press, 1979.
    [13] Nijenhuis, A. and Wilf, H. S., Combinatorial Algorithms, 2nd ed., Academic Press, New York, 1978.
    [14] Pólya, G., “On the number of certain lattice polygons”, Journal of Combinatorial Theory6 (1969), 102-105.
    [15] Regev, A. and Zeilberger, D., “Proof of a Conjecture on Multisets of Hook Numbers”, Annals of Combinatorics 1 (1997), 391-394.
    [16] Riordan, J., Combinatorial Identities, John Wiley & Sons, 1968.
    [17] Shapiro, L. W., “A Catalan triangle”, Discrete Mathematics 14 (1976), 83-90.
    [18] William, F., Young Tableaux: with applications to representation theory and geometry, Cambridge University Press, New York, 1997.
    [19] Woan, W. J., Shapiro, L., Rogers, D. G., “The Catalan numbers, the Lebesgue integral, and 4n-2”, Am. Math. Monthly 104 (1997), 10.
    [20] Woan, W. J., “Area of Catalan paths”, Discrete Mathematics 226 (2001),439-444.
    [21] Zeilberger, D., “A short hook-lengths bijection inspired by the Greene-Nijenhuis-Wilf proof”, Discrete Mathematics 51 (1984), 101-108.
    Description: 碩士
    國立政治大學
    應用數學系
    90
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G91NCCV3412012
    Data Type: thesis
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File Description SizeFormat
    index.html0KbHTML2386View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback