政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/120262
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113648/144635 (79%)
Visitors : 51642840      Online Users : 486
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/120262


    Title: 液態生物檢體應用在卵巢癌分類與篩檢
    An application of serum exosomes as biomarkers in differentiating histological subtypes of ovarian cancer
    Authors: 藍逵原
    Lan, Kuei-Yuan
    Contributors: 張家銘
    Chang, Jia-Ming
    藍逵原
    Lan, Kuei-Yuan
    Keywords: 卵巢癌
    小分子核糖核酸
    核糖核酸測序
    邏輯回歸分析
    機器學習
    Ovarian cancer
    MiRNA
    RNA-seq
    Logistic regression
    Machine learning
    Date: 2018
    Issue Date: 2018-10-01 12:11:26 (UTC+8)
    Abstract: 卵巢癌是女性第八常見癌症,並且在婦科癌症中是致死率最高的一種。我的研究期望能找到卵巢癌相關的生物標記,幫助癌症能在早期確診。假設不同的卵巢癌形態會分泌不同的小分子核糖核酸 (miRNAs) 進而影響週遭細胞的表現導致癌化,那藉由比較這些在微環境中的小分子核糖核酸能夠幫助我們判斷病人是否得到卵巢癌。在小分子核糖核酸的研究中,我們使用了45位病人的樣本,其中29位是帶有不同亞型的癌症,另外16位是控制組。在我們所觀察到的2496個小分子核糖核酸中,263個在癌症病人與控制組間表現上有顯著的差異,再藉由機器學習的方式,我們建立了一個可靠的邏輯回歸模型來分辨病人是否得到卵巢癌,以及卵巢癌的那一種亞型。此外,針對具有較強抗藥性的亞型的病人,也對其基因的表現在正常細胞與癌細胞的不同進行研究。研究共有十位癌症病人,以其中六位病人的正常細胞當作控制組,得到有755個基因在兩組之間表現上有顯著的差異。最後,我們發現了許多過去不曾發現的小分子核糖核酸與基因之間的關係,未來可能用做標靶治療的目標。
    Ovarian cancer is the eighth common cancer in women, and the most deadly gynecologic malignancy. My master project aims to identify candidates of biomarkers, which may be used in early detection of ovarian cancer. We hypothesize that different subtypes of ovarian cancer may secret exosomes carrying different miRNAs play different roles in cell-cell communication in microenvironment. Therefore, we aim to compare the expression profiles of exosomal miRNA in the serum from patients with or without ovarian cancer. Furthermore, we performed RNA-seq for mRNA profiles in the cancer tissue of a most drug-resistant subtype with their paired normal tissue from the same patients. A total of 45 patients were enrolled in this study. Sera from all 45 patients were used in the study of exosomal miRNA, in which 29 samples are cancer patients and the other 16 are non-cancer controls. RNA-seq data was generated from ten patients who had clear-cell ovarian cancer subtypes, six of them have corresponding paired normal tissue. In miRNA, 2496 miRNAs were identified and 263 miRNAs are differentially expressed between normal samples and cancer samples. We construct a reliable machine learning model to classify patient cancer subtypes base on the candidate miRNAs selected by the model. 755 RNAs are differentially expressed between normal samples and cancer samples. Lastly, we found couple unknown predicted miRNA and mRNA interaction, which may further the candidate of targeted therapy in the future.
    Reference: 1. Weng,S.-L. et al. (2017) Genome-wide discovery of viral microRNAs based on phylogenetic analysis and structural evolution of various human papillomavirus subtypes. Brief Bioinform.
    2. Wang,Z. et al. (2009) RNA-Seq: a revolutionary tool for transcriptomics.Nat Rev Genet, 10, nrg2484.
    3. Elias,K. et al. (2017) Diagnostic potential for a serum miRNA neural network for detection of ovarian cancer. Elife, 6, e28932.
    4. Yokoi,A. et al. (2014) A combination of circulating miRNAs for the early detection of ovarian cancer. Oncotarget, 5, 89811–89823.
    5. Katz,B. et al. (2015) MicroRNAs in Ovarian Cancer. Hum Pathol, 46, 1245–1256.
    6. Schwarzenbach,H. et al. (2014) Clinical relevance of circulating cell-free microRNAs in cancer. Nat Rev Clin Oncol, 11, nrclinonc.2014.5.
    7. Shahab,S. et al. (2012) The effects of MicroRNA transfections on global patterns of gene expression in ovarian cancer cells are functionally coordinated. Bmc Med Genomics, 5, 1–16.
    8. Love,M. et al. (2015) RNA-Seq workflow: gene-level exploratory analysis and differential expression. F1000research, 4, 1070.
    9. Translational Advances in Gynecologic Cancers. 1st Edition. (2017)Anticancer Res, 37, 5907.
    10. Karnezis,A. et al. (2016) The disparate origins of ovarian cancers: pathogenesis and prevention strategies. Nat Rev Cancer, 17, 65–74.
    11. Wang,J. et al. (2017) Circulating exosomal miR-125a-3p as a novel biomarker for early-stage colon cancer. Sci Reports, 7, 4150.
    12. Wu,C.-Y. et al. (2016) Exosomes and breast cancer: a comprehensive review of novel therapeutic strategies from diagnosis to treatment. Adv Exp Med Biol, 24, 6–12.
    13. Martinez-Garcia,E. et al. (2016) Development of a sequential workflow based on LC-PRM for the verification of endometrial cancer protein biomarkers in uterine aspirate samples. Oncotarget, 7, 53102–53115.
    14. Andrés-León,E. et al. (2016) miARma-Seq: a comprehensive tool for miRNA, mRNA and circRNA analysis. Sci Reports, 6, 25749.
    15. Hauser,A. et al. (2017) Trends in GPCR drug discovery: new agents, targets and indications. Nat Rev Drug Discov, 16, 829.
    16. Martinez-Garcia,E. et al. (2017) Targeted Proteomics Identifies Proteomic Signatures in Liquid Biopsies of the Endometrium to Diagnose Endometrial Cancer and Assist in the Prediction of the Optimal Surgical Treatment. Clin Cancer Res, 23, 6458–6467.
    17. Kuhn M (2008) Building predictive models in R using the caret package. J Stat Soft, 28 (5), 1-26.
    18. Liu,T. et al. (2015) Verifying the markers of ovarian cancer using RNA-seq data. Mol Med Rep, 12, 1125–30.
    19. Raposo,G. and Stoorvogel,W. (2013) Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol., 200, 373–83.
    20. Anders,S. et al. (2010) Differential expression analysis for sequence count data. Nat Précéd.
    21. Yokoi,A. et al. (2017) Malignant extracellular vesicles carrying MMP1 mRNA facilitate peritoneal dissemination in ovarian cancer. Nature Communications, 8, 14470.
    22. Duan,H. et al. (2017) TET1 inhibits EMT of ovarian cancer cells through activating Wnt/β-catenin signaling inhibitors DKK1 and SFRP2. Gynecologic Oncology, 147, 408–417.
    Description: 碩士
    國立政治大學
    資訊科學系
    105753035
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0105753035
    Data Type: thesis
    DOI: 10.6814/THE.NCCU.CS.015.2018.B02
    Appears in Collections:[Department of Computer Science ] Theses

    Files in This Item:

    File SizeFormat
    303501.pdf2305KbAdobe PDF215View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback