Reference: | 1.T. Sexton, E. Yaffe, E. Kenigsberg, F. Bantignies, B. Leblanc, M. Hoichman, H. Parrinello, A. Tanay, and G. Cavalli, “Three-Dimensional Folding and Functional Organization Principles of the Drosophila Genome,” in Cell 148, pp. 458-472, 2012. 2.B. Bonev and G. Cavalli, “Organization and function of the 3D genome,” in Nature Reviews Genetics volume 17, pp. 661-678, 2016. 3.S. Rosa and P. Shaw, “Insights into chromatin structure and dynamics in plants,“ in Biology (Basel), Vol. 2(4), pp. 1378-1410, 2013. 4.J. R. Dixon, D. U. Gorkin, and B. Ren, "Chromatin domains: the unit of chromosome organization," in Mol. Cell, Vol. 62, pp. 668-680, 2016. 5.J. Dostie, J. Dekker, “ Mapping networks of physical interactions between genomic elements using 5C technology,” in Nat. Protoc. 2, pp. 988-1002, 2007. 6.A. S. Belmont, "Large-scale chromatin organization: the good, the surprising, and the still perplexing," in Curr. Opin. Cell Biol., Vol. 26, pp. 69-78, 2014. 7.K. S. Sandhu, G. Li , H. M. Poh, ..., Y. Ruan, “Large-scale functional organization of long-range chromatin interaction networks,” in Cell Rep, Vol. 2(5), pp. 1207-1219, 2012. 8.J. Dekker, K. Rippe, M. Dekker, and N. Kleckner, “Capturing chromosome conformation,” in Science, Vol. 295, pp. 1306-1311, 2002. 9.A. Pombo, and N. Dillon, "Three-dimensional genome architecture: players and mechanisms," in Nat. Rev. Mol. Cell Biol., Vol. 16, pp. 245-257, 2015. 10. J. Dekker, “The three ‘C’ s of chromosome conformation capture: controls, controls, controls,” in Nat. Methods 3, pp. 17-21, 2006. 11. Z. Zhao, G. Tavoosidana, M. Sjolinder, A. Gondor, ..., U. Singh, “Circular chromosome conformation capture (4C) uncovers extensive networks of epigenetically regulated intra- and interchromosomal interactions,” in Nat. Genet. 38, pp. 1341-1347, 2006. 12. E. Lieberman-Aiden, N. L. van Berkum, L. Williams, M. Imakaev, ..., J. Dekker, “Comprehensive mapping of long range interactions reveals folding principles of the human genome,” in Science, Vol. 326(5950), pp. 289-293, 2009. 13. W. de Laat and D. Duboule, “Topology of mammalian developmental enhancers and their regulatory landscapes,” in Nature, Vol. 502, pp. 499-506, 2013. 14. Nora E.P. , Lajoie B.R., Schulz E.G., Giorgetti L., Okamoto I., Servant N., Piolot T., van Berkum N.L., Meisig J., Sedat J.et al. Spatial partitioning of the regulatory landscape of the X-inactivation centre. Nature . 2012; 485:381– 385. 15. N. Matharu and N. Ahituv, “Minor Loops in Major Folds: Enhancer-Promoter Looping, Chromatin Restructuring, and Their Association with Transcriptional Regulation and Disease,” in PLoS Genet, 2015. 16. G. A. Pavlopoulos, M. Secrier, C. N. Moschopoulos, ..., P. G. Bagos, “Using graph theory to analyze biological networks,” in BioData Min. 4, 10, 2011. 3917. C. Chin, S. Wu, H. Ho, M. Ko, and C. Lin, “cytoHubba: Identifying hub objects and sub-networks from complex interactome,” in BMC Systems Biology, 8(Suppl 4):S11, 2014. 18. H. Jeong, B. Tombor, R. Albert, Z. N. Oltvai, and A. L. Barabási, “The large-scale organization of metabolic networks,” in Nature, Vol. 407, pp. 651-654, 2000. 19. J. B. Morlot, J. Mozziconacci, and A. Lesne, “Network concepts for analyzing 3D genome structure from chromosomal contact maps,” in EPJ Nonlinear Biomed Phys, 4: 2, 2016. 20. M. W. Schmid, S. Grob, and U. Grossniklaus, “HiCdat: a fast and easy-to-use Hi-C data analysis tool,” in BMC Bioinformatics, Vol. 16, pp. 277, 2015. 21. G. Castellano, F. Le Dily, A. Hermoso Pulido, M. Beato, and G. Roma, “Hi-Cpipe: a pipeline for high-throughput chromosome capture,” in bioRxiv. Cold Spring Harbor Labs Journals, 2015. 22. E. C. Schofield, T. Carver, P. Achuthan, P. Freire-Pritchett, M. Spivakov, J. A. Todd, O. S. Burren, “CHiCP: a web- based tool for the integrative and interactive visualization of promoter capture Hi-C datasets,” in Bioinformatics, Vol. 32, Issue 16, pp. 2511–2513, 2016. 23. N. C Durand, J. T. Robinson, M. S. Shamim, I. Machol, J. P. Mesirov, E. S. Lander, and E. Lieberman Aiden, “Juicebox provides a visualization system for Hi-C contact maps with unlimited zoom,” in Cell Systems 3(1), 2016. 24. R. Kumar, H. Sobhy, P. Stenberg, and L. Lizana, “Genome Contact Map Explorer - A platform for the comparison, interactive visualization and analysis of genome contact maps,” in Nucleic Acids Res, Vol. 45, Issue 17, pp. e152, 2017. 25. A. Thibodeau, E. J. Márquez, O. Luo, Y. Ruan, F. Menghi, D. G. Shin, M. L. Stitzel, P. Vera-Licona, and D. Ucar, “QuIN: A Web Server for Querying and Visualizing Chromatin Interaction Networks, ” in PLoS Comput Biol, 2016. 26. S. Babaei, A. Mahfouz, M. Hulsman, B. P. Lelieveldt, J. de Ridder, and M. Reinders, “Hi-C chromatin interaction networks predict co-expression in the mouse cortex,” in PLoS Comput Biol, 11(5):1004221, 2015. 27. B. Schuettengruber, N. Oded Elkayam, T. Sexton, M. Entrevan, S. Stern, A. Thomas, E. Yaffe, H. Parrinello, A. Tanay, and G. Cavalli, “Cooperativity, specificity, and evolutionary stability of Polycomb targeting in Drosophila,” in Cell Reports, 2014. 28. Q. Szabo, D. Jost, J. M. Chang, ... and G. Cavalli, “TADs are 3D structural units of higher-order chromosome organization in Drosophila,” in Science Advances, 2018. 29. T. Schauer, Y. Ghavi-Helm, T. Sexton, ... , P. B. Becker, “Chromosome topology guides the Drosophila Dosage Compensation Complex for target gene activation,” in EMBO reports, 2017. 30. Ay F, Noble WS. Analysis methods for studying the 3D architecture of the genome. Genome Biol. 2015;16:1–15. 31. Schmitt AD, Hu M, Ren B. Genome-wide mapping and analysis of chromosome architecture. Nat Rev Mol Cell Biol. 2016;17:743–55. 32. P. Erdös and A. Rényi, “On the evolution of random graphs,” in Publ. Math. Inst. Hung. Acad. Sci, Vol. 5, pp. 17-61, 1960. 33. B. A. László and A. Réka, “Emergence of Scaling in Random Networks,” in Science, Vol. 286, Issue. 5439, pp. 509-512, 1999. 4034. Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu, “A Survey on Network Embedding,” in arXiv preprint arXiv:1711.08752, 2017. 35. Xiangyu Li, Weizheng Chen, Yang Chen, Xuegong Zhang, Jin Gu Michael, and Q. Zhang, “Network embedding- based representation learning for single cell RNA-seq data,” in Nucleic Acids Research, Vol 45, Issue 19, pp. E166, 2017. 36. Jian Tang, Qu Meng, Mingzhe Wang, Ming Zhang, Jun Yan, and Qiaozhu Mei, “Line: Large-scale information network embedding,” in Proceedings of the 24th International Conference on World Wide Web, 2015. 37. B. Perozzi, R.i Al-Rfou, and S. Skiena, “DeepWalk: Online Learning of Social Representations,” in KDD `14 Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining, pp. 701- 710, 2014. 38. L. van der Maaten and G. Hinton, “Visualizing Data using t-SNE,” in Journal of Machine Learning Research, Vol. 9, pp. 2579-2605, 2008. 39. H. Jeong, S. P. Mason, A. L. Barabási and Z. N. Oltvai, “Lethality and centrality in protein networks,” in Nature, Vol. 411, pp. 41-42, 2001. |