Loading...
|
Please use this identifier to cite or link to this item:
https://nccur.lib.nccu.edu.tw/handle/140.119/119755
|
Title: | LTE-Advanced網路中具QoS感知之D2D模式選擇 QoS Aware Mode Selection for LTE-Advanced D2D Communication |
Authors: | 詹博為 Chan, Po-Wei |
Contributors: | 張宏慶 Jang, Hung-Chin 詹博為 Chan, Po-Wei |
Keywords: | 服務品質 裝置與裝置直接通訊 頻譜使用率 模式選擇 Quality of service, QoS Device-to-device (D2D) direct communication Spectrum utilization Mode selection |
Date: | 2018 |
Issue Date: | 2018-08-29 15:55:30 (UTC+8) |
Abstract: | 在裝置對裝置(Device-to-Device,D2D)的議題中,模式選擇(Mode Selection)被視為是用來改善D2D干擾的一項技術。然而,現今關於模式選擇的文獻,大多聚焦在節能的議題上,較少文獻在研究增進D2D頻譜使用率,而頻譜使用效益仍有改善空間。因此,在滿足服務品質(Quality of Service, QoS)的前提下,我們提出一個服務品質感知的模式選擇( QoS Aware Mode Selection,QAMS) 機制,其目的是根據現有UE分佈情形,能夠在吞吐量( throughput) 不輸給傳統的三種模式選擇下,盡可能的提升頻譜使用效率。QAMS將傳統三種模式選擇的頻譜分配方式結合成一種新的以中頻譜分配方式。在QAMS方法中,頻譜分配保有傳統三種模式選擇的特性,將所有頻譜分成三個區塊,每個區塊對應到一種傳統的模式選擇功能,我們再根據QoS來推算出最適合目前所有UE分佈情形的頻譜分配比率。實驗結果顯示,在七個細胞的模擬環境下,在吞吐量方面,QAMS與複用模式( reuse mode)相比,有優於14%的表現,和專屬模式(dedicated mode)相比,贏4%,和中繼模式( relay mode)相比,有優於8%的表現。在頻譜使用率方面, QAMS與專屬模式相比,優於34%的表現,與中繼模式相比,優於34%的表現。 Mode Selection is considered a technique to improve D2D interference. In today`s mode selection literature, there are few discussions about increasing spectrum utilization. In order to improve spectrum usage effectively, we propose a Quality of Service Aware Mode Selection (QAMS) mechanism to combine the spectrum allocation methods of the traditional three modes. The goal is to improve spectrum efficiency as much as possible based on the existing UE distribution scenario with throughput constantly higher than the traditional three modes. QAMS method combines characteristics of a conventional three selection modes. The spectrum is divided into three blocks and each block corresponds to a conventional mode selection function. Based on the QoS, we derive the spectrum allocation ratio that is the most suitable for all current UE distribution scenarios. Our simulation environment is based on seven cells. As the number of cellular UEs and D2D UEs increases gradually, in terms of throughput, QAMS has better performance than 14% compared with reuse mode, and wins 4% compared with dedicated mode, which is better than 8 % in relay mode. In terms of spectrum usage, QAMS outperforms the dedicated mode by 34%, and is better than the relay mode by 34%. |
Reference: | 1. Khajonpong Akkarajitsakul , Phond Phunchongharn , Ekram Hossain , Vijay K. Bhargava ,"Mode Selection for Energy-Efficient D2D Communications in LTE-Advanced Networks: A Coalitional Game Approach", Communication Systems (ICCS), IEEE , 21-23 Nov 2012 ,Page(s) ;488-492 2. Cheng-Pang Chien ; Yu-Chung Chen ; Hung-Yun Hsieh,"Exploiting Spatial Reuse Gain through Joint Mode Selection and Resource Allocation for Underlay Device-to-Device Communications," International Symposium on Wireless Personal Multimedia Communications (WPMC), Taipei, Taiwan, September 2012 (invited paper). 3. Klaus Doppler ,Chia-Hao Yu ,Cassio B. Ribeiro, Pekka Janis, " Mode selection for Device-to-Device Communication underlaying an LTE-Advanced Network," Wireless Communications and Networking Conference (WCNC), July,2010 IEEE,. 4. Aamod Khandekar, Naga Bhushan, Ji Tingfang,Vieri Vanghi “LTE-Advanced: Heterogeneous Networks”2010 European Wireless Conference ,12-15 April, 2010 Page(s) ; 978-982 5. Yong Liu; Yanli Xu; Dong Li; Wei Wang, " Device-to-Device Communication in LTE-A Cellular Networks: Standardization, Architecture, and Challenge " , 2014 IEEE 79th Vehicular Technology Conference (VTC Spring) , Page(s) ;1-5 6. Ehsan Naghipour and Mehdi Rasti, " A distributed joint power control and mode selection scheme for D2D communication underlaying LTE-A networks " , 2016 IEEE Wireless Communications and Networking Conference, IEEE, 2016 , Page(s) ;1-5 7. Kenta Okino,Taku Nakayama ,Chiharu Yamazaki ,Hirotaka Sato, Yoshimasa Kusano , Communications Workshops (ICC), “Pico Cell Range Expansionwith Interference Mitigation toward LTE-AdvancedHeterogeneous Networks”, 2011 IEEE International Conference , 5-9 June 2011, Page(s) ;1-5 8. Kwon-Yeol Park; Young-Bin Chang; Dong-Woo Kim; Jong-Han Kim; Woon-Haing Hur, " Opportunistic discovery scheme for device-to-device communication" , 2017 IEEE 22nd International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), IEEE, 2017, Page(s) ;1-5 9. B. Wang, L. Chen, X. Chen, X. Zhang and D. Yang, "Resource allocation optimization for device-to-device communication underlaying cellular networks," 2011 IEEE 73rd Vehicular Technology Conference (VTC Spring), pp. 1-6, May. 2011. 10. L. Wei, R. Q. Hu, Y. Qian and G. Wu, "Enable device-to-device communications underlaying cellular networks: challenges and research aspects," in IEEE Communications Magazine, vol. 52, no. 6, pp. 90-96, Jun. 2014. 11. Si Wen , Xiaoyue Zhu , Xin Zhang , Dacheng Yang , "QoS-Aware Mode Selection and Resource Allocation Scheme for Device-to-Device (D2D) Communication in cellular networks " ,Communications Workshops (ICC), IEEE, 9-13 June 2013 , Page(s) ;101-105 12. G. Yu, L. Xu, D. Feng, R. Yin, G. Y. Li and Y. Jiang, "Joint mode selection and resource allocation for device-to-device communications," in IEEE Transactions on Communications, vol. 62, no. 11, pp. 3814–3824, Nov. 2014. 13. Kai Yang, “Interference management in LTE wireless networks”, Wireless Communication , IEEE , June 2012, Page(s); 8-9 14. Jingjing Zhang; Mao Wang; Min Hua; Tingting Xia; Wenjie Yang; Xiaohu You, " LTE on License-Exempt Spectrum " , IEEE Communications Surveys & Tutorials, 2018, Volume: 20, Issue: 1 , Page(s): 647 – 673 15. Ruiting Zhao; Jiancun Fan; Ying Zhang; Xinmin Luo, " Mode selection for downlink transmission in LTE-A networks", 2016 8th International Conference on Wireless Communications & Signal Processing (WCSP), IEEE, 2016 , Page(s) ; 1-5 16. Cisco Visual Networking Index: “Global Mobile Data Traffic Forecast Update 2013–2018,” http://www.cisco.com/ 17. Nokia Siemen White Paper: “2020 Beyond 4G Radio Evolution for Gigabit Experience” , http://networks.nokia.com/ |
Description: | 碩士 國立政治大學 資訊科學系 101753037 |
Source URI: | http://thesis.lib.nccu.edu.tw/record/#G1017530371 |
Data Type: | thesis |
DOI: | 10.6814/THE.NCCU.CS.009.2018.B02 |
Appears in Collections: | [Department of Computer Science ] Theses
|
Files in This Item:
File |
Size | Format | |
037101.pdf | 8275Kb | Adobe PDF2 | 120 | View/Open |
|
All items in 政大典藏 are protected by copyright, with all rights reserved.
|