政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/119725
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113313/144292 (79%)
造訪人次 : 50945187      線上人數 : 849
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/119725


    題名: 深度學習應用於股價走勢之研究:以大陸市場為例
    An Empirical Study of Deep Learning to the Trend of Stock Price in China Market
    作者: 張力元
    Chang, Li-Yuan
    貢獻者: 黃泓智
    Huang, Hong-Chih
    張力元
    Chang, Li-Yuan
    關鍵詞: 大陸股市
    深度學習
    股價走勢
    技術指標
    China stock market
    Deep learning
    Stock price trend
    Technical indicators
    日期: 2018
    上傳時間: 2018-08-29 15:49:15 (UTC+8)
    摘要: 股價的未來走勢一直是一個未知且令人充滿興趣的研究領域,過去已有許多學者提出各種理論以論述其觀點,如今我們身處於人工智慧的時代,各種機器學習的應用已顛覆我們對生活方式的認知。本文建構一套神經網路的簡單序列模型,以幾種常見的技術指標為主要特徵,並選定未來二十日的股價漲跌作為預測目標,同時考慮交易成本,使用定錨式移動視窗的方式,將兩者之間的關係透過神經網路進行深度學習,藉以預測未來一年股價走勢的分類情況,從而挑選出具有上漲潛力的股票,以其分類結果作為判斷買賣時機的依據,將模型預測上漲機率較高的前幾檔股票納入投資組合,以實現自動化的資產配置,同時也考慮不同情境下的配置方式。實證結果顯示本文的主要策略相比大盤績效,其年化報酬率在大多數的年度皆有不錯表現,在七年回測期間的年化報酬率達13.67%,惟其標準差也稍高。
    The future trend of stock prices has always been an unknown and interesting research field. Many scholars have proposed various theories to discuss their views. Now we are in the era of artificial intelligence, and the various application of machine learning has subverted our perception of lifestyle. This paper constructs a simple sequential model of neural network, with several common technical indicators as the main features, and selects the rise or fall of the stock prices in the next twenty days as the predicting target, while considering the transaction cost and using the anchored moving window method. The relationship between this two is deep learning through the neural network to predict the classification of stock price movements in the coming year, so as to select stocks with rising potential, and use the classification results as a basis for judging the timing of trading. The model predicting the first few stocks with higher probability are included in the portfolio to achieve automated asset allocation, while considering the configuration in different scenarios. The empirical results show that the main strategy of this paper has a good performance in most years compared to the market performance. The annualized rate of return during the seven-year back-testing period is 13.67%, but the standard deviation is also slightly higher.
    參考文獻: Akita, R., Yoshihara, A., Matsubara, T., & Uehara, K. (2016). Deep learning for stock prediction using numerical and textual information. In Computer and Information Science (ICIS), 2016 IEEE/ACIS 15th International Conference on (pp. 1-6). IEEE.
    Chong, T. & Ng, W. (2008). Technical analysis and the London stock exchange: testing the MACD and RSI rules using the FT30. Applied Economics Letters, 15(14), 1111-1114.
    Dean, J. (2016). Building machine learning systems that understand. In Proceedings of the 2016 International Conference on Management of Data (pp. 1-1). ACM.
    Huval, B., Wang, T., Tandon, S., Kiske, J., Song, W., Pazhayampallil, J., & Mujica, F. (2015). An Empirical Evaluation of Deep Learning on Highway Driving. arXiv preprint arXiv:1504.01716.
    Ioffe, S. & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift. arXiv preprint arXiv:1502.03167.
    Khan, A. & Gour, B. Neural Networks with Technical Indicators Identify Best Timing to Invest in the Selected Stocks.
    Kingma, D. & Ba, J. (2014). Adam: A Method for Stochastic Optimization. arXiv preprint arXiv:1412.6980.
    Mizuno, H., Kosaka, M., Yajima, H., & Komoda, N. (1998). Application of Neural Network to Technical Analysis of Stock Market Prediction. Studies in Informatic and control, 7(3), 111-120.
    Nelson, D., Pereira, A., & Oliveira, R. (2017). Stock Market`s Price Movement Prediction with LSTM Neural Networks. In Neural Networks (IJCNN), 2017 International Joint Conference on (pp. 1419-1426). IEEE.
    Poulos, J. (2015). Predicting Stock Market Movement with Deep RNNs.
    Sezer, O., Ozbayoglu, A., & Dogdu, E. (2017). An Artificial Neural Network-based Stock Trading System Using Technical Analysis and Big Data Framework. In Proceedings of the SouthEast Conference (pp. 223-226). ACM.
    Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout: A Simple Way to Prevent Neural Networks from Overfitting. The Journal of Machine Learning Research, 15(1), 1929-1958.
    Sun, Y., Wang, X., & Tang, X. (2014). Deep Learning Face Representation from Predicting 10,000 Classes. In Proceedings of the IEEE conference on computer vision and pattern recognition(pp. 1891-1898).
    Wang, D., Khosla, A., Gargeya, R., Irshad, H., & Beck, A. (2016). Deep Learning for Identifying Metastatic Breast Cancer. arXiv preprint arXiv:1606.05718.
    Xiong, R., Nichols, E., & Shen, Y. (2015). Deep Learning Stock Volatility with Google Domestic Trends. arXiv preprint arXiv:1512.04916.
    描述: 碩士
    國立政治大學
    風險管理與保險學系
    105358012
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G0105358012
    資料類型: thesis
    DOI: 10.6814/THE.NCCU.RMI.009.2018.F08
    顯示於類別:[風險管理與保險學系] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    801201.pdf2615KbAdobe PDF22414檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋