English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113311/144292 (79%)
Visitors : 50940609      Online Users : 950
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 資訊管理學系 > 學位論文 >  Item 140.119/119723
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/119723


    Title: 預測市場系統於傳染性疾病預測之應用與使用者接受度
    Application and User Acceptance of Prediction Market System in Epidemic Disease Forecasting
    Authors: 張書勳
    Chang, Shu-Hsun
    Contributors: 李有仁
    Li, Eldon Y.
    張書勳
    Chang, Shu-Hsun
    Keywords: 預測市場
    系統發展
    傳染性疾病預測
    預測正確性
    使用者接受
    Prediction market
    System development
    Epidemic prediction
    Prediction accuracy
    User accpetance
    Date: 2018
    Issue Date: 2018-08-29 15:49:07 (UTC+8)
    Abstract: 預測市場透過整合來自不同來源之資訊,用以預測未來發生之事件,本研究透過該項機制建置網際網路為基礎之預測市場系統,針對選定之傳染性疾病傳播之預測事件之實驗環境,蒐集驗證性資料探討預測市場之預測正確性。此外,並透過DeLone and McLean’s之理論為基礎,探討影響使用者持續使用預測市場行為之前置因子。
    Prediction market, operating like a future market, can be used as a mechanism to integrate information from different sources to predict the outcomes of future events. This research first proposes an architecture and establishes a web-based system of prediction market. Then, the study conducts the investigation about the case that involves the prediction of epidemic disease breaks to empirically measure the accuracy of prediction market system. Further, this study proposes a research model based on the DeLone and McLean’s IS success model and Ajzen’s theory of planned behavior to comprehend the drivers that influence the users’ intentions to continue trading in the prediction market. Finally, academic and practical implications are discussed.
    Reference: 1. Aaby, K., Herrmann, J. W., Jordan, C. S., Treadwell, M., and Wood, K., 2006. Montgomery County`s public health service uses operations research to plan emergency mass dispensing and vaccination clinics, Interfaces, 36(6), 569-579.
    2. Ahn, T. R., Ryu, S., and Han, I., 2007. The impact of Web quality and playfulness on user acceptance of online retailing, Information and Management, 44(3), 263-275.
    3. Ajzen, I., 1985. From intention to actions: a theory of planned behavior. In J. Kuhl and J. Beckmann (Ed.). Action Control, from Cognition to Behavior. New York: Springer-Vesrlag, 11-39.
    4. Ajzen, I., 1991. The theory of planned behavior, Organizational behavior and Human Decision Process, 50(2), 170-211.
    5. Anderson, R. E., and Srinivasan, S. S., 2003. E-satisfaction and e-loyalty: a contingency framework, Psychology and Marketing, 20(2), 123-138.
    6. Bai, Y., and Jin, Z., 2005. Prediction of SARS epidemic by BP neural networks with online prediction strategy, Chaos, Solitons & Fractals, 26(2), 559-569.
    7. Bandura, A., 1997. Self-efficacy: The Exercise of Control, New York, NY: Freeman.
    8. Barki, H., and Hartwick, J., 1994. Measuring user participation, user involvement, and user attitude, MIS Quarterly, 18(1), 59-82.
    9. Bates, T. W., Thurmond, M. C., and Carpenter, T. E., 2003. Description of an epidemic simulation model for use in evaluating strategies to control an outbreak of foot-and-mouth disease, American Journal of Veterinary Research, 64(2), 195-204.
    10. Batra, R., and Ahtola, O. T., 1990. Measuring the hedonic and utilitarian sources of consumer attitudes, Marketing Letters, 2(2), 159-170.
    11. Berg, J.E., Nelson, F.D., and Rietz, T.A., 2008. Prediction market accuracy in the long run, International Journal of Forecasting, 24(2), 285-300.
    12. Bernardo, T.M., Rajic, A., Young, I., Robiadek, K., Pham, M.T., and Funk, J.A., 2013. Scoping review on search queries and social media for disease surveillance: a chronology of innovation, Journal of Medical Internet Research, 15(7), e147.
    13. Bhattacherjee, A., 2001. Understanding information systems continuance: An expectation-confirmation model, MIS Quarterly, 25(3), 351-370.
    14. Bhattacherjee, A., and Premkumar, G., 2004. Understanding changes in belief and attitude toward information technology usage: A theoretical model and longitudinal test, MIS Quarterly, 28(2), 229-254.
    15. Bothos, E., Apostolou, D., and Mentzas, G., 2009. Collective intelligence for idea management with Internet-based information aggregation markets, Internet Research, 19(1), 26-41.
    16. Brownstein, J. S., Freifeld, C. C., Reis, B. Y., and Mandl, K. D., 2008. Surveillance Sans Frontieres: Internet-based emerging infectious disease intelligence and the HealthMap project, PLoS Med, 5(7), e151, DOI: 10.1371.
    17. Brüggelambert, G., 2004. Information and efficiency in political stock markets: using computerized markets to predict election results, Applied Economics, 36(7), 753-768.
    18. Camerer, C. F., 1998. Can asset markets be manipulated? A field experiment with racetrack betting, Journal of Political Economy, 106(3), 457-482.
    19. Castiglione, F., Pappalardo, F., Bernaschi, M., and Motta, S., 2007. Optimization of HAART with genetic algorithms and agent-based models of HIV infection, Bioinformatics, 23(24), 3350-3355.
    20. Chen, K.-Y., and Plott, C. R., 2002. Information aggregation mechanisms: concept, design and implementation for a sales forecasting problem, Caltech Social Science Working Paper No. 1131. California Institute of Technology, Pasadena.
    21. Childers, T. L., Carr, C. L., Peck, J. and Carson, S., 2001. Hedonic and utilitarian motivations for online retail shopping behavior, Journal of Retailing, 77(4), 511-535.
    22. Chin, W. W., 1998. Commentary: Issues and opinion on structural equation modeling, MIS Quarterly, 22(1), 7-16.
    23. Chin, W. W., Marcolin, B. L., and Newsted, P. R., 2003. A partial least squares latent variable modeling approach for measuring interaction effects: Results from a Monte Carlo simulation study and an electronic-mail emotion/adoption study, Information Systems Research, 14(2), 189-217.
    24. Coles, P. A., Lakhani, K. R., and McAfee, A. P., 2007. Prediction markets at Google, Harvard Business School Case 607-088, May 30, 2007.
    25. Compeau, D. R., and Higgins, C. A., 1995. Application of social cognitive theory to training for computer skill, Information Systems Research, 6(2), 118-143.
    26. Conitzer, V., 2010. Making decisions based on the preferences of multiple agents, Communications of the ACM, 53(3), 84-94.
    27. Conner, M., and Armitage, C. J., 1998. Extending the theory of planned behavior: a review and avenues for further research, Journal of Applied Social Psychology, 28(15), 1429-1464.
    28. Cousens, S.N., Vynnycky, E., Zeidler, M., Will, R.G., and Smith, P.G., 1997. Predicting the CJD epidemic in humans, Nature, 385(6613), 197-198.
    29. Cowgill, B., Wolfers, J., and Zitzewitz, E., 2009. Using prediction market prices to track information flows: evidence from Google, retrieved from http://faculty.haas.berkeley.edu/bo_cowgill/googlepredictionmarketpaper.pdf (retrieved on 3 May 2015).
    30. Cronin, J. J., Brady, M. K., and Hult, G. T. M., 2000. Assessing the effects of quality, value, and customer satisfaction on consumer behavioral intentions in service environments, Journal of Retailing, 76(2), 193-218.
    31. Davis, F. D., Bagozzi, R. P., and Warshaw, P. R., 1992. Extrinsic and intrinsic motivation to use computers in the workplace, Journal of Applied Social Psychology, 22(14), 1111-1132.
    32. Davis, F. D., 1989. Perceived usefulness, perceived ease of use, and user acceptance of information technology, MIS Quarterly, 13(3), 319-340.
    33. Davis, F. D., 1993. User acceptance of information technology: system characteristics, user perceptions and behavioral impacts, International Journal of Man-Machine Studies, 38(3), 475-487
    34. DeLone, W. H., and McLean, E. R., 2003. The DeLone and McLean model of information systems success: A ten-year update, Journal of Management Information Systems, 19(4), 9-30.
    35. DeLone, W. H., and McLean, E. R., 1992. Information systems success: the quest for the dependent variable, Information Systems Research, 3(1), 60-95.
    36. DesRoches, C.M., Campbell, E.G., Rao, S.R., Donelan, K., Ferris, T.G., Jha, A., Kaushal, R., Levy, D.E., Rosenbaum, S., Shields, A.E., and Blumenthal, D., 2008. Electronic health records in ambulatory care—a national survey of physicians, New England Journal of Medicine, 359(1), 50-60.
    37. Drew, C. A., and Perera, A. H., 2011. Expert knowledge as a basis for landscape ecological predictive models, In Predictive species and habitat modeling in landscape ecology (pp. 229-248). Springer, New York, NY.
    38. Ellner, S. P., Bailey, B. A., Bobashev, G. V., Gallant, A. R., Grenfell, B. T., and Nychka, D. W., 1998. Noise and nonlinearity in measles epidemics: combining mechanistic and statistical approaches to population modeling, The American Naturalist, 151(5), 425-440.
    39. Elveback, L. R., Fox, J. P., Ackerman, E., Langworthy, A., Boyd, M., and Gatewood, L., 1976. An influenza simulation model for immunization studies, American Journal of Epidemiology, 103(2), 152-165.
    40. Erikson, R.S., and Wlezien, C., 2008. Are political markets really superior to polls as election predictors? Public Opinion Quarterly, 72(2), 190-215.
    41. Fishbein, M., and Ajzen, I., 1975. Belief, attitude, intention and behavior: an introduction to theory and research. Reading, MA: Addsion-Wesley.
    42. Focks, D. A., Daniels, E., Haile, D. G., and Keesling, J. E., 1995. A simulation model of the epidemiology of urban dengue fever: literature analysis, model development, preliminary validation, and samples of simulation results, American Journal of Tropical Medicine and Hygiene, 53(5), 489-506.
    43. Fornell, C., and Larcker, D. F., 1981. Structural equation models with unobservable variables and measurement error: algebra and statistics, Journal of Marketing Research, 18(1), 382-388.
    44. Forsythe, R., Nelson, F., Neumann, G. R., and Wright, J., 1992. Anatomy of an experimental political stock market, American Economic Review, 82(5), 1142-1161.
    45. Foutz, N. Z., and Jank, W., 2007. The wisdom of crowds: pre-release forecasting via functional shape analysis of the online virtual stock market, retrieved on December 1, 2009, retrieved from http://ssrn.com/abstract=1432444.
    46. Freifeld, C.C., Mandl, K.D., Reis, B.Y., and Brownstein, J.S., 2008. HealthMap: global infectious disease monitoring through automated classification and visualization of Internet media reports, Journal of the American Medical Informatics Association, 15(2), 150-157.
    47. Gefen, D., 2000. E-commerce: the role of familiarity and trust, Omega-International Journal of Management Science, 28(6), 725-737.
    48. Ghani, A.C., Ferguson, N.M., Donnelly, C.A., and Anderson, R.M., 2000. Predicted vCJD mortality in Great Britain, Nature, 406(6796), 583-584.
    49. Ginsberg, J., Mohebbi, M.H, Patel, R.S., Brammer, L, Smolinski, M.S., and Brilliant, L., 2009. Detecting influenza epidemics using search engine query data, Nature, 457(7232), 1012-1015.
    50. Gluskin, R. T., Johansson, M. A., Santillana, M., and Brownstein, J. S., 2014. Evaluation of Internet-based dengue query data: Google Dengue Trends, PLoS Negl Trop Dis, 8(2), e2713.
    51. Godfrey, K., 1983. Compartmental Models and Their Application, Academic Press, New York, NY. (ISBN 0-12-286970-2).
    52. Gronroos, C., 1982. Strategic management and marketing in the service sector, Helsinki, Finland: Swedish School of Economics and Business Administration.
    53. Gruca, T. S., 2000. The IEM movie box office market integrating marketing and finance using electronic markets, Journal of Marketing Education, 22(1), 5-14.
    54. Gruca, T. S., Berg, J., and Cipriano, M., 2003. The effect of electronic markets on forecasts of new product success, Information Systems Frontiers, 5(1), 95-105.
    55. Guan, P., Huang, D. S., and Zhou, B. S., 2004. Forecasting model for the incidence of hepatitis A based on artificial neural network, World Journal of Gastroenterology: WJG, 10(24), 3579-3582.
    56. Guo, Z., Fang, F., and Whinston, A. B., 2006. Supply chain information sharing in a macro prediction market, Decision Support Systems, 42(3), 1944-1958.
    57. Hanson R., 2003. Combinatorial information market design, Information Systems Frontiers, 5(1), 105-119.
    58. Hanson, R., 2007. Logarithmic market scoring rules for modular combinatorial information aggregation, Journal of Prediction Markets, 1(1), 3‐15.
    59. Harman, H. H., 1976. Modern Factor Analysis, Chicago: University Of Chicago Press.
    60. Hellier, P. K., Geursen, G. M., Carr, R. A., and Rickard, J. A., 2003. Customer repurchase intention: a general structural equation model, European Journal of Marketing, 37(11), 1762-1800.
    61. Hirschman, E.C., and Holbrook, M. B., 1982. Hedonic consumption: emerging concepts, methods and propositions, Journal of Marketing, 46(3), 92-101.
    62. Hopman, J. W., 2007. Using forecasting markets to manage demand risk, Intel Technology Journal, 11(2), 127-135.
    63. Kaplan, E.H., Craft, D.L., and Wein, L.M., 2003. Analyzing bioterror response logistics: the case of smallpox, Mathematical Biosciences, 185(1), 33-72.
    64. Karahanna, E., Straub, D. W., and Chervany, N. L., 1999. Information technology adoption across time: a cross-sectional comparison of pre-adoption and post-adoption beliefs, MIS Quarterly, 23(2), 183-213.
    65. King, R., 2006. Workers, place your bets, Bussiness Week, retrieved August 3, 2006, retrieved from http://www.businessweek.com/technology/content/aug2006/tc20060803_012437.htm, retrieved on May 3 2015.
    66. Kwak, D. H. A., Ramamurthy, K. R., Nazareth, D., and Lee, S., 2018. The moderating role of helper`s high in anchoring process: An empirical investigation in the context of charity website design, Computers in Human Behavior, 84, 230-244.
    67. Kwon, N., and Onwuegbuzie, A. J., 2005. Modeling the factors affecting individuals’ use of community networks: a theoretical explanation of community-based information and communication technology use, Journal of the American Society for Information Science and Technology, 56(14), 1525-1543.
    68. LaBarbera, P. A., and Mazursky, D., 1983. A longitudinal assessment of consumer satisfaction/dissatisfaction: the dynamic aspect of the cognitive process, Journal of Marketing Research, 20(4), 393-404.
    69. LaComb, C.A., Barnett, J.A., and Pan, Q., 2007. The imagination market, Information Systems Frontiers, 9(2/3), 245-256.
    70. Larson, R. C., 2007. Simple models of influenza progression within a heterogeneous population, Operations Research, 55(3), 399-412.
    71. Lee, E. K., Maheshwary, S., Mason, J., and Glisson, W., 2006. Large-scale dispensing for emergency response to bioterrorism and infectious-disease outbreak, Interfaces, 36(6), 591-607.
    72. Lee, M.-C., 2010. Explaining and predicting users’ continuance intention toward e-learning: an extension of the expectation-confirmation model, Computer and Education, 54(2), 506-516.
    73. Leigh, A., and Wolfers, J., 2006. Competing approaches to forecasting elections: economic models, opinion polling and prediction markets, Economic Record, 82(258), 325-337.
    74. Lewis, B. R., and Soureli, M., 2006. The antecedents of consumer loyalty in retail banking, Journal of Consumer Behaviour, 5(1), 15-31.
    75. Lewis, R. C., and Booms, B. H., 1983. The marketing aspects of service quality, In L. L. Berry, G. L. Shostack, and G. Upah (Ed.) Emerging Perspectives in Services Marketing, Chicago: American Marketing Association, 99-107.
    76. Li, E.Y., Tung, C.Y., and Chang, S.H., 2015. User adoption of wisdom of crowd: usage and performance of prediction market system, International Journal of Electronic Business, 12(2), 185-214.
    77. Liu, C., and Arnett, K. P., 2000. Exploring the factors associated with Web site success in the context of electronic commerce, Information and Management, 38(1), 23-33.
    78. Luckner, S., Schroder, J., and Slamka, C., 2008. On the forecast accuracy of sports prediction markets, In Henner Gimpel, Nicholas R. Jennings, Gregory E. Kersten, Axel Ockenfels, and Christof Weinhardt (Ed), Negotiation, Auctions, and Market Engineering. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 227-234.
    79. Luhmann, N., 2000. Familiarity, confidence, trust: problems and alternatives, In Diego Gambetta (Ed), Trust: Making and Breaking Cooperative Relations. New York: Basil Blackwell, 94-107.
    80. Luqman, A., Masood, A., and Ali, A., 2018. An SDT and TPB-based integrated approach to explore the role of autonomous and controlled motivations in “SNS discontinuance intention”, Computers in Human Behavior, 85, 298-307.
    81. Lutz, W., and Scherbov, S., 1998. An expert-based framework for probabilistic national population projections: The example of Austria, European Journal of Population, 14(1), 1-17.
    82. Magni, M., Tayor, M. S., and Venkate sh, V., 2010. To play or not to play: a cross-temporal investigation using hedonic and instrumental perspective to explain user-intentions to explore a technology, International Journal of Human-Computer Studies, 68(9), 572-588.
    83. Makridakis, S., Andersen, A., Carbone, R., Fildes, R., Hibon, M., Lewandowski, R., and Winkler, R., 1982. The accuracy of extrapolation (time series) methods: results of a forecasting competition, Journal of Forecasting, 1(2), 111-153.
    84. Malaria, R. B., 2004. Using Climate to Predict Infectious Disease Outbreaks: A Review. World Health Organization.
    85. Malik, M.T., Gumel, A., Thompson, L.H., Strome, T., and Mahmud, S.M., 2011. Google flu trends and emergency department triage data predicted the 2009 pandemic H1N1 waves in Manitoba, Canadian Journal of Public Health, 102(4), 294-297.
    86. Mandl, K.D., Overhage, J.M., Wagner, M.M., Lober, W.B., Sebastiani, P., Mostashari, F., Pavlin, J.A., Gesteland, P.H., Treadwell, T., Koski, E., Hutwagner, L., Buckeridge, D.L., Aller, R.D., and Grannis, S., 2004. Implementing syndromic surveillance: a practical guide informed by the early experience, Journal of the American Medical Informatics Association, 11(2), 141-150.
    87. Marakas, G. M., Yi, M. Y., and Johnson, R. D., 1998. The multiple and multifaceted character of computer self-efficacy: toward clarification of the construct and an integrative framework for research, Information Systems Research, 9(2), 126-163.
    88. Marathe, M. Kumar, A., and Vullikanti, S., 2013. Computational epidemiology, Communications of the ACM, 56(7), 88-96.
    89. Marino, S., El-Kebir, M., and Kirschner, D., 2011. A hybrid multi-compartment model of granuloma formation and T cell priming in tuberculosis, Journal of Theoretical Biology, 280(1), 50-62.
    90. Mathieson, K., 1991. Predicting user intention: comparing the technology acceptance model with the theory of planned behavior, Information Systems Research, 2(3), 173-191.
    91. Miller, G., Randolph, S., and Patterson, J. E., 2006. Responding to bioterrorist smallpox in San Antonio, Interfaces, 36(6), 580-590.
    92. Mortimer, P. P., 1985. Estimating AIDS, UK, Lancet, 326(8466), 1248.
    93. Notani, A. S., 1998. Moderators of perceived behavioral control’s predictiveness in the theory of planned behavior: a meta-analysis, Journal of Consumer Psychology, 7(3), 247-271.
    94. Nsoesie, E. O., Brownstein, J. S., Ramakrishnan, N., and Marathe, M. V., 2014. A systematic review of studies on forecasting the dynamics of influenza outbreaks, Influenza and Other Respiratory Viruses, 8(3), 309-316.
    95. Nsoesie, E., Mararthe, M., and Brownstein, J., 2013. Forecasting peaks of seasonal influenza epidemics, PLoS Currents, 5, DOI: 10.1371/currents.outbreaks.bb1e879a23137022ea79a8c508b030bc
    96. Oliver, R. L., 1980. A Cognitive Model of the Antecedents and Consequences of Satisfaction Decisions, Journal of Marketing Research, 17(4), 460- 469.
    97. Overby, J. W., and Lee, E.-J., 2006. The effect of utilitarian and hedonic online shopping value on consumer preference and intentions, Journal of Business Research, 53(10), 1160-1166.
    98. Parasuraman, A., Ziethaml, V. A., and Berry, L. L., 1988. SERVQUAL: a multiple-item scale for measuring consumer perceptions of service quality, Journal of Retailing, 64(1), 12-40.
    99. Parker, J., and Epstein, J. M., 2011. A distributed platform for global-scale agent-based models of disease transmission, ACM Transactions on Modeling and Computer Simulation (TOMACS), 22(1), 2-33.
    100. Pavlou, P. A., and Fygenson, M., 2006. Understanding and predicting electronic commerce adoption: an extension of the theory of planned behavior, MIS Quarterly, 30(1), 115-143.
    101. Pennock, D., 2006. Implementing Hanson’s market maker. Oddhead Blog, retrieved from https://newmerks.googlecode.com/files/Implementing Hanson`s Market Maker.pdf, retrieved on May 16 2016.
    102. Pervaiz, F., Pervaiz, M., Rehman, N. A., and Saif, U., 2012. FluBreaks: early epidemic detection from Google flu trends, Journal of Medical Internet Research, 14(5), e125.
    103. Podsakoff, P. M., MacKenzie, S. B., Lee, J. Y., and Podsakoff, N. P., 2003. Common method biases in behavioral research: A critical review of the literature and recommended remedies, Journal of Applied Psychology, 88(5), 879-903.
    104. Polgreen, P.M., Chen, Y., David, M., Pennock, D.M. and Nelson, F.D., 2008. Using internet searches for influenza surveillance, Clinical Infectious Diseases, 47(11), 1443-1448.
    105. Polgreen, P.M., Nelson, F.D., and Neumann, G.R., 2006. Using prediction markets to forecast trends in infectious diseases, Microbe, 1(10), 459-65.
    106. Polgreen, P.M., Nelson, F.D., and Neumann, G.R., 2007. Use of prediction markets to forecast infectious disease activity, Clinical Infectious Diseases, 44(2), 272-279.
    107. Reis, B.Y., and Mandl, K.D., 2003. Time series modeling for syndromic surveillance, BMC Medical Informatics and Decision Making, 3(2), retrieved from http://bmcmedinformdecismak.biomedcentral.com/articles/10.1186/1472-6947-3-2, retrieved on February 19, 2016.
    108. Rhode, P. W., and Strumpf, K. S., 2009. Manipulating political stock markets: a field experiment and a century of observational data, retrieved from http://www.unc.edu/~cigar/papers/ManipNBER.pdf, retrieved on May 28, 2011.
    109. Rhode, P.W., and Strumpf, K.S., 2004. Historical presidential betting markets, Journal of Economic Perspectives, 18(2), 127-142.
    110. Roca, J. C., Chiu, C.-M., and Martinez, F. J., 2006. Understanding e-learning continuance intention: An extension of the Technology Acceptance Model, International Journal of Human-Computer Studies, 64(8), 683-696.
    111. Santillana, M., Nguyen, A. T., Dredze, M., Paul, M. J., Nsoesie, E. O., and Brownstein, J. S., 2015. Combining search, social media, and traditional data sources to improve influenza surveillance, PLoS Comput Biol, 11(10), e1004513.
    112. Savage, L.J., 1971. Elicitation of personal probabilities and expectations, Journal of the American Statistical Association, 66(336), 783-801.
    113. Schoen, H., Gayo-Avello, D., Takis Metaxas, P., Mustafaraj, E., Strohmaier, M., and Gloor, P., 2013. The power of prediction with social media, Internet Research, 23(5), 528-543.
    114. Schulte, K. M., and Talat, N., 2010. Castleman`s disease—a two compartment model of HHV8 infection, Nature Reviews Clinical Oncology, 7(9), 533-543.
    115. Seddon, P. B., 1997. A respecification and extension of the DeLone and McLean model of IS success, Information Systems Research, 8(3), 240-253.
    116. Segovia-Juarez, J. L., Ganguli, S., and Kirschner, D., 2004. Identifying control mechanisms of granuloma formation during M. tuberculosis infection using an agent-based model, Journal of Theoretical Biology, 231(3), 357-376.
    117. Servan-Schreiber, E., Wolfers, J., Pennock, D., and Galebach, B., 2004. Prediction markets: does money matter? Electronic Markets, 14(3). 243-251.
    118. Spann, M., and Skiera, B., 2009. Sports forecasting: a comparison of the forecast accuracy of prediction markets, betting odds and tipsters, Journal of Forecasting, 28(1), 55-72.
    119. Spreng, R. A., MacKenzie, S. B., and Olshavsky, R. W., 1996. A reexamination of the determinants of customer satisfaction, Journal of Marketing, 60(3), 15-32.
    120. Stoel, L., Wickliffe, V., and Lee, K. H., 2004. Attribute beliefs and spending as antecedents to shopping value, Journal of Business Research, 57(10), 1067-1073.
    121. Sugiura, H., Ohkusa, Y., Akahane, M., Sano, T., Okabe, N., and Imamura, T., 2011. Development of a web-based survey for monitoring daily health and its application in an epidemiological survey, Journal of Medical Internet Research, 13(3), e66.
    122. Sutton, S., 1998. Predicting and explaining intentions and behavior: how well are we doing? Journal of Applied Social Psychology, 28(15), 1317-1338.
    123. Szajna, B., 1996. Empirical evaluation of the revised technology acceptance model, Management Science, 42(1), 85-92.
    124. Taylor, S., and Todd, P. A., 1995. Understanding information technology usage: a test of competing models, Information Systems Research, 6(2), 144-176.
    125. To, P.-L., Liao, C., and Lin, T.-H., 2007. Shopping motivations on Internet: A study based on utilitarian and hedonic value, Technovation, 27(12), 774-787.
    126. Ture, M., and Kurt, I., 2006. Comparison of four different time series methods to forecast hepatitis A virus infection, Expert Systems with Applications, 31(1), 41-46.
    127. Valleron, A.J., Boelle, P.Y., Will, R., and Cesbron, J. Y., 2001. Estimation of epidemic size and incubation time based on age characteristics of vCJD in the United Kingdom, Science, 294(5547), 1726-1728.
    128. Walker, D. A., 2006. Predicting presidential election results, Applied Economics, 38(5), 483-490.
    129. Whitworth, M. H., 2006. Designing the response to an anthrax attack, Interfaces, 36(6), 562-568.
    130. WHO, 2004. Using Climate to Predict Infectious Disease Outbreaks: A Review. Report No. WHO/SDE/OEH/04.01, World Health Organization, Geneva, retrieved from http://www.who.int/globalchange/publications/en/oeh0401.pdf (retrieved on May 3 2015).
    131. WHO, 2012. WHO Technical Working Group on Creation of an Oral Cholera Vaccine Stockpile, Meeting report, Geneva, 26-27 April, World Health Organization, Geneva, retrieved from http://apps.who.int/iris/bitstream/10665/75240/1/WHO_HSE_PED_2012 _2_eng.pdf, retrieved on May 3 2015.
    132. Wixom, B. H., and Todd, P. A., 2005. A theoretical integration of user satisfaction and technology acceptance, Information Systems Research, 16(1), 85-102.
    133. Wolfers, J., and Leigh, A., 2002. Three tools for forecasting federal elections: lessons from 2001, Australian Journal of Political Science, 37(2), 223-240.
    134. Wolfers, J., and Zitzewitz, E., 2006. Prediction markets in theory and practice. NBER Working Paper No. 12083, retrieved from http://www.nber.org/papers/w12083.
    135. Wolfers, J., and Zitzewitz, E., 2004. Prediction markets, Journal of Economic Perspective, 18(2). 107‐126
    136. Xu, C., Ryan, S., Prybutok, V., and Wen, C., 2012. It is not for fun: An examination of social network site usage, Information and Management, in press, retrieved from http://dx.doi.org/10.1016/j.im.2012.05.001.
    137. Yang, Z., and Peterson, R. T., 2004. Customer perceived value, satisfaction and loyalty: the role of switching costs, Psychology and Marketing, 21(10), 799-822.
    138. Yom-Tov, E., Borsa, D., Cox, I. J., and McKendry, R. A., 2014. Detecting disease outbreaks in mass gatherings using Internet data, Journal of Medical Internet Research, 16(6), e154.
    139. Zeithaml, V. A., Berry, L. L., and Parasuraman, A., 1996. The behavioral consequences of service quality, Journal of Marketing, 60(2), 31-46.
    140. Zelenitsky, S. A., Iacovides, H., Ariano, R. E., and Harding, G. K., 2005. Antibiotic combinations significantly more active than monotherapy in an in vitro infection model of Stenotrophomonas maltophilia, Diagnostic Microbiology and Infectious Disease, 51(1), 39-43.
    141. Zenios, S. A., Chertow, G. M., and Wein, L. M., 2000. Dynamic allocation of kidneys to candidates on the transplant waiting list, Operations Research, 48(4), 549-569.
    Description: 博士
    國立政治大學
    資訊管理學系
    983565041
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0983565041
    Data Type: thesis
    DOI: 10.6814/DIS.NCCU.MIS.021.2018.A05
    Appears in Collections:[資訊管理學系] 學位論文

    Files in This Item:

    There are no files associated with this item.



    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback