政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/119719
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 50955444      Online Users : 972
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大典藏 > College of Commerce > Department of MIS > Theses >  Item 140.119/119719
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/119719


    Title: 零售顧客回購預測模型分析
    Analysis of Retail Customer Retention Model
    Authors: 涂逸凡
    Tu, I-Fan
    Contributors: 莊皓鈞
    周彥君

    Chuang, Hao-Chun
    Chou, Yen-Chun

    涂逸凡
    Tu, I-Fan
    Keywords: 零售業
    機器學習
    Retailing
    RFM
    Regularity
    Pareto/NBD
    Pareto/GGG
    Machine learning
    Date: 2018
    Issue Date: 2018-08-29 15:48:29 (UTC+8)
    Abstract: RFM模型(Recency, Frequency, Monetary)已長期被廣泛使用於行銷領域,對消費者行為模式具有良好的預測能力和分群的能力,本研究主要探討以超商零售業銷售資料預測顧客行為的模型與方法,並以Recency、Frequency指標之經典模型Pareto/NBD(Schmittlein, Morrison, & Colombo, 1987)為基礎進行延伸,加入ITTs(Inter Transaction Times)指標之Pareto/GGG模型(Platzer & Reutterer, 2016)進行分析,以馬可夫鏈蒙地卡羅法進行參數模擬,對以ITTs估計出Regularity指標k進行分析,並使用機器學習之演算法以估計出之參數為特徵值,對會員到店天數之預測做監督式學習,優化預測結果,對行銷策略提供更好的方向。
    With outstanding prediction and segmentation performance, the RFM(Recency, Frequency, Monetary) model has been widely used in various business area. Based on the classic Pareto/NBD(Schmittlein et al., 1987) model, the Pareto/GGG model(Platzer & Reutterer, 2016) proposes a new concept ITTs(Inter Transaction Times) including a new parameter k which describes the regularity of purchase behaviors. With 120 thousands transaction record of a leading convenience store in Taiwan, this research analyzes the predictive performance of the Pareto/GGG model. Additionally, using parameter estimated from Markov chain Monte Carlo as input features, we conduct supervised learning on customer purchase frequencies to improve forecast accuracy of customer shopping behaviors.
    Reference: Breiman, L. (2001). Random forests. Machine learning, 45(1), 5-32.
    Buckinx, W., & Van den Poel, D. (2005). Customer base analysis: partial defection of behaviourally loyal clients in a non-contractual FMCG retail setting. European Journal of Operational Research, 164(1), 252-268.
    Chen, T., & Guestrin, C. (2016). Xgboost: A scalable tree boosting system. Paper presented at the Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining.
    Coussement, K., & Van den Poel, D. (2009). Improving customer attrition prediction by integrating emotions from client/company interaction emails and evaluating multiple classifiers. Expert Systems with Applications, 36(3), 6127-6134.
    Fader, P., Hardie, B., & Berger, P. D. (2004). Customer-base analysis with discrete-time transaction data.
    Fader, P. S., Hardie, B. G., & Lee, K. L. (2005a). “Counting your customers” the easy way: An alternative to the Pareto/NBD model. Marketing science, 24(2), 275-284.
    Fader, P. S., Hardie, B. G., & Lee, K. L. (2005b). RFM and CLV: Using iso-value curves for customer base analysis. Journal of Marketing Research, 42(4), 415-430.
    Friedman, J., Hastie, T., & Tibshirani, R. (2000). Additive logistic regression: a statistical view of boosting (with discussion and a rejoinder by the authors). The annals of statistics, 28(2), 337-407.
    Friedman, J. H. (2001). Greedy function approximation: a gradient boosting machine. Annals of statistics, 1189-1232.
    Gupta, S., Hanssens, D., Hardie, B., Kahn, W., Kumar, V., Lin, N., Sriram, S. (2006). Modeling customer lifetime value. Journal of service research, 9(2), 139-155.
    Hosseini, S. M. S., Maleki, A., & Gholamian, M. R. (2010). Cluster analysis using data mining approach to develop CRM methodology to assess the customer loyalty. Expert Systems with Applications, 37(7), 5259-5264.
    Hughes, A. M. (1994). Strategic database marketing: the masterplan for starting and managing a profitable. Customer-based Marketing Program, Irwin Professional.
    Khajvand, M., Zolfaghar, K., Ashoori, S., & Alizadeh, S. (2011). Estimating customer lifetime value based on RFM analysis of customer purchase behavior: Case study. Procedia Computer Science, 3, 57-63.
    King, S. F. (2007). Citizens as customers: Exploring the future of CRM in UK local government. Government Information Quarterly, 24(1), 47-63.
    Kumar, V., Venkatesan, R., & Reinartz, W. (2006). Knowing what to sell, when, and to whom. Harvard business review, 84(3), 131-137.
    Liu, D.-R., & Shih, Y.-Y. (2005). Hybrid approaches to product recommendation based on customer lifetime value and purchase preferences. Journal of Systems and Software, 77(2), 181-191.
    McCarty, J. A., & Hastak, M. (2007). Segmentation approaches in data-mining: A comparison of RFM, CHAID, and logistic regression. Journal of business research, 60(6), 656-662.
    Miglautsch, J. R. (2000). Thoughts on RFM scoring. Journal of Database Marketing & Customer Strategy Management, 8(1), 67-72.
    Morgan, R. M., & Hunt, S. D. (1994). The commitment-trust theory of relationship marketing. The journal of marketing, 20-38.
    Platzer, M., & Reutterer, T. (2016). Ticking away the moments: Timing regularity helps to better predict customer activity. Marketing science, 35(5), 779-799.
    Schmittlein, D. C., Morrison, D. G., & Colombo, R. (1987). Counting your customers: Who-are they and what will they do next? Management science, 33(1), 1-24.
    Sohrabi, B., & Khanlari, A. (2007). Customer lifetime value (CLV) measurement based on RFM model.
    Thomas, J. S. (2001). A methodology for linking customer acquisition to customer retention. Journal of Marketing Research, 38(2), 262-268.
    Wheat, R. D., & Morrison, D. G. (1990). Estimating purchase regularity with two interpurchase times. Journal of Marketing Research, 87-93.
    Yeh, I.-C., Yang, K.-J., & Ting, T.-M. (2009). Knowledge discovery on RFM model using Bernoulli sequence. Expert Systems with Applications, 36(3), 5866-5871.
    Description: 碩士
    國立政治大學
    資訊管理學系
    105356012
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0105356012
    Data Type: thesis
    DOI: 10.6814/THE.NCCU.MIS.019.2018.A05
    Appears in Collections:[Department of MIS] Theses

    Files in This Item:

    File SizeFormat
    601201.pdf1404KbAdobe PDF28View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback