Reference: | 1] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation, vol. 9, no. 8, 1997. [2] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2009. [3] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016. [4] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, 2015. [5] F. A. Gers, J. A. Schmidhuber, and F. A. Cummins, “Learning to forget: Continual prediction with lstm,” Neural Comput., vol. 12, no. 10, 2000. [6] S. J. Taylor, An Introduction to Volatility. Princeton University Press, 2005. [7] Investopedia. Volatility. [Online]. Available: https://www.investopedia.com/terms/ v/volatility.asp [8] W. Huang, Y. Nakamori, and S.-Y. Wang, “Forecasting stock market movement direction with support vector machine,” Computers & Operations Research, vol. 32, no. 10, 2005. [9] S. A. Hamid and Z. Iqbal, “Using neural networks for forecasting volatility of sp 500 index futures prices,” Journal of Business Research, 2004. [10] A. Vejendla and D. Enke, “Evaluation of garch, rnn and fnn models for forecasting volatility in the financial markets,” IUP Journal of Financial Risk Management, vol. 10, no. 1, 2013. [11] R. Akita, A. Yoshihara, T. Matsubara, and K. Uehara, “Deep learning for stock prediction using numerical and textual information,” in 2016 IEEE/ ACIS 15th International Conference on Computer and Information Science (ICIS), 2016. [12] M. Matta, M. I. Lunesu, and M. Marchesi, “Bitcoin spread prediction using social and web search media,” in UMAP Workshops, 2015. [13] I. Madan and S. Saluja, “Automated bitcoin trading via machine learning algorithms,” Stanford University, 2014. [14] A. Greaves and B. Au, “Using the bitcoin transaction graph to predict the price of bitcoin,” Stanford University, 2015. [15] S. McNally, “Predicting the price of bitcoin using machine learning,” Master’s thesis, Dublin, National College of Ireland, 2016. [16] H. Jang and J. Lee, “An empirical study on modeling and prediction of bitcoin prices with bayesian neural networks based on blockchain information,” IEEE Access, vol. 6, 2018. [17] Y. Bengio, “Learning deep architectures for ai,” Foundations and Trends® in Machine Learning, vol. 2, no. 1, 2009. [18] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and new perspectives,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35, no. 8, 2013. [19] J. L. Elman, “Finding structure in time,” Cognitive Science, vol. 14, no. 2, 1990. [20] Z. C. Lipton, “A critical review of recurrent neural networks for sequence learning,” CoRR, vol. abs/1506.00019, 2015. [21] A. Graves, Supervised Sequence Labelling with Recurrent Neural Networks. Springer-Verlag Berlin Heidelberg, 2012. [22] K. Greff, R. K. Srivastava, J. Koutník, B. R. Steunebrink, and J. Schmidhuber, “LSTM: A search space odyssey,” CoRR, vol. abs/1503.04069, 2015. [23] Wikipedia contributors, “Loss functions for classification — Wikipedia, the free encyclopedia,” 2018. [Online]. Available: https://en.wikipedia.org/w/index.php? title=Loss_functions_for_classification&oldid=838253245 [24] Wikipedia contributors, “Gradient descent — Wikipedia, the free encyclopedia,” 2018. [Online]. Available: https://en.wikipedia.org/w/index.php?title=Gradient_ descent&oldid=845809247 [25] R. Rojas, Neural Networks: A Systematic Introduction. Berlin, Heidelberg: Springer-Verlag, 1996. [26] J. Bergstra and Y. Bengio, “Random search for hyper-parameter optimization,” J. Mach. Learn. Res., vol. 13, 2012. [27] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A simple way to prevent neural networks from overfitting,” Journal of Machine Learning Research, vol. 15, 2014. [28] S. Ruder, “An overview of gradient descent optimization algorithms,” CoRR, vol. abs/1609.04747, 2016. [29] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,” CoRR, vol. abs/1412.6980, 2014. [30] S. Dziembowski, “Introduction to cryptocurrencies,” 2015. [31] I. Bentov, A. Gabizon, and A. Mizrahi, “Cryptocurrencies without proof of work,” CoRR, vol. abs/1406.5694, 2014. [32] Proof of work. [Online]. Available: https://en.bitcoin.it/wiki/Proof_of_work [33] A. Narayanan, J. Bonneau, E. W. Felten, A. Miller, S. Goldfeder, and J. Clark, Bitcoin and Cryptocurrency Technologies. Princeton University Press, 2016. [34] Gdax exchange center documentation. [Online]. Available: https://docs.gdax.com/ [35] blockchain.info. [Online]. Available: https://blockchain.info/ [36] T. Hastie, R. Tibshirani, and J. Friedman, The Elements of Statistical Learning. Springer New York Inc., 2001. [37] Keras. [Online]. Available: https://keras.io/ [38] Nvidia. [Online]. Available: http://www.nvidia.com/page/home.html [39] A. Karpathy, “The unreasonable effectiveness of recurrent neural networks,” 2015. [Online]. Available: http://karpathy.github.io/2015/05/21/rnn-effectiveness/ |