Reference: | 中文參考文獻 1.尹相志(2009)。《SQL Server 2008 Data Mining資料採礦》。悅知文化。 2.安芷誼(2005),《技術分析對台灣股票市場投資績效之探討─移動平均線法》。銘傳大學國際企業學系碩士在職專班碩士論文。 3.吳安琪,陳淑玲,費業勳(2011)。〈臺灣股票市場技術指標之研究─不同頻率資料績效比較〉。東海管理評論【特刊】,第一期,187-226頁。 4.李良俊(2003)。《台灣股票市場技術分析有效性之研究》。實踐大學企業管理研究所碩士論文。 5.李淑惠,林金賢(2006)。〈技術指標與股價漲跌幅非線性關係之獲利能力之探討〉。台灣管理學刊6(1),129-156頁。 6.梁宏銘(2009)。《應用人工智慧技術預測台灣股市》。中華大學經營管理研究所碩士論文。 7.梁榮輝(2004)。《應用技術分析指標於台灣股票市場加權指數買進時機切入之實證研究─以RSI、MACD及DIF為技術指標》。佛光人文社會學院管理學研究所碩士論文。 8.陳奕廷(2016)。機器學習與人工神經網路(一) 。取自網址:https://case.ntu.edu.tw/blog/?p=26248 9.陳奕廷(2016)。機器學習與人工神經網路(二):深度學習。取自網址:https://case.ntu.edu.tw/blog/?p=26340 10.陳國玄(2004)。《人工神經網路與統計方法應用於台灣上市電子類股價指數預測與分類之研究》。國立成功大學統計學研究所碩士論文。 11.陳鄢貞(2011)。《以財務指標及技術指標建構股價預測模型─類神經網路模型之應用》。國立台北大學國際財務金融碩士在職專班碩士論文。 12.樓禎祺,何培基(2003)。〈股價移動平均線之理論與實證─以台灣股市模擬投資績效操作為例〉。育達研究叢刊,五、六期合刊,27-52頁。 英文參考文獻 1.Brock, William, Lakonishok J., and B LeBaron, “Simple Technical Trading Rules and the Stochastic Properties of Stock Returns,” Journal of Finance, vol.47,1992, pp.1731-1764 2.G. E. Hinton and R.R. Salakhutdinov, “Reducing the Dimensionality of Data with Neural Networks,” Science, vol.313, pp.504-507 3.Levy, R.A., “Relative Strength as a Criterion for Investment Selection,” Journal of Finance, vol.22, 1967, pp.595-610 4.Omer Berat Sezer, Murat Ozbayoglu and Erdogan Dogdu, “A Deep Neural-Network Based Stock Trading System Based on Evolutionary Optimized Technical Analysis Parameters,” Procedia Computer Science, vol.114, 2017, pp.473-480 5.Rumelhart, David E., Hinton, Geoffrey E., and Williams and Ronald J., “Learning Internal Representations by Back-propagating Errors,” Nature, vol.323, 1986, pp.533-536 |