English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51068228      Online Users : 869
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/119134
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/119134


    Title: 配對交易與機器學習在台灣股票市場之應用
    Applications of Pairs Trading and Machine Learning in Taiwan Stock Market
    Authors: 徐瑀暄
    Hsu, Yu-Hsuan
    Contributors: 林士貴
    蔡瑞煌

    Lin, Shih-Kuei
    Tsai, Rua-Huan

    徐瑀暄
    Hsu,Yu-Hsuan
    Keywords: 共整合
    配對交易
    布林通道
    類神經網路
    投資組合
    Cointegration
    Pairs trading
    Bollinger band
    Neural network
    Portfolio
    Date: 2018
    Issue Date: 2018-08-01 16:25:50 (UTC+8)
    Abstract: 本研究根據Vidyamurthy (2004)以及後續相關文獻所提出的統計套利配對交易方法對台灣股票市場進行實證研究。本文使用的模型為Engle and Granger (1987)提出的二階段共整合檢定。我們利用上述模型檢定台灣股票,找出具共整合性質之股票配對,利用技術指標-布林通道找出價格異常的時間點進行交易,建構配對交易投資組合;本研究進一步將類神經網路模型加入,用於預測共整合殘差走勢,建構類神經網路結合布林通道之配對交易策略並建構投資組合。實證結果顯示和Avellaneda and Lee (2010)結果相同,市場上確實存在市場中立性的報酬,且兩個策略的投資組合皆有優於大盤的績效和穩健性;此外類神經網路確實有幫助我們減少進場次數提高勝率,並且使投資組合的最大虧損下降,但也因此降低了投資組合的總報酬。
    This paper used the statistic arbitrage pairs trading method according to Vidyamurthy (2004) and other papers based on this book. This paper followed papers to conduct empirical research on Taiwan stock market. The models used in this paper is two-steps cointegration test that proposed by Engle and Granger (1987). We tested Taiwan stocks through the above models to test cointegration, and find the investable pairs. After finding out investable pairs, we used Bollinger Band to find out abnormal stock price to trade. Then we constructed the portfolio to study its performance. This study further adds the neural network model to predict cointegral residual and constructs a strategy with Bollinger Band and neural network model. The result shows that the strategy helping us find market neutral return, which is the same as the result of Avellaneda and Lee (2010). Furthermore, our portfolio is also better than investing in benchmark. Neural network model truly helps us reduce trading frequency and decrease drawdown, but it also decreases return at the same time.
    Reference: 沈宣佑(2015)。三檔股票交易設計並與傳統配對交易之績效表現比較。交通大學財務金融研究所學位論文,1-92。
    陳旭昇,2013。時間序列分析: 總體經濟與財務金融之應用。臺灣東華。
    陳岱佑, & 王克陸. (2012)。台灣指數期貨與 ETF 價差交易之研究-以台股期貨, 電子期貨, 金融期貨與台灣 50ETF 為例。未出版之碩士論文,國立交通大學,財務金融研究所。
    羅君昱(2005)。台灣股票市場執行統計套利之可行性分析。未出版之碩士論文,國立政治大學,經營管理研究所。
    Chen, W. H., Shih, J. Y., & Wu, S. (2006). Comparison of support-vector machines and back propagation neural networks in forecasting the six major Asian stock markets. International Journal of Electronic Finance, 1(1), 49-67.
    Guenster, N., Kole, E., and Jacobsen, B. (2009). Riding bubbles, Working paper.
    Dickey, D. A., and Fuller, W. A. (1979). Distribution of the estimators for autoregressive time series with a unit root. Journal of the American Statistical Association, 74, 427-431.
    Engle, R. F., & Granger, C. W. (1987). Co-integration and error correction: representation, estimation, and testing. Econometrica: Journal of the Econometric Society, 251-276.
    Gatev, E., GOETZMANN, W., & ROUWENHORST, K. (1999). Pairs trading: performance of a relative value Arbitrage rule; Working Paper 7032, National Bureau of Economic Research, Cambridge.
    Granger, C. W., & Newbold, P. (1974). Spurious regressions in econometrics. Journal of Econometrics, 2(2), 111-120.
    Johansen, S., & Juselius, K. (1990). Maximum likelihood estimation and inference on cointegration—with applications to the demand for money. Oxford Bulletin of Economics and statistics, 52(2), 169-210.
    Kara, Y., Boyacioglu, M. A., & Baykan, Ö. K. (2011). Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul Stock Exchange. Expert systems with Applications, 38(5), 5311-5319.
    Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint arXiv:1412.6980.
    Madhavaram G. R. (2013) Statistical arbitrage using pairs trading with support vector machine learning. Working paper. Saint Mary`s University.
    McCulloch, W. S., & Pitts, W. (1943). A logical calculus of the ideas immanent in nervous activity. The bulletin of mathematical biophysics, 5(4), 115-133.
    Phillips, P. C., & Ouliaris, S. (1990). Asymptotic properties of residual based tests for cointegration. Econometrica: Journal of the Econometric Society, 165-193.
    Rumelhart, D. E., Smolensky, P., McClelland, J. L., & Hinton, G. (1986). Sequential thought processes in PDP models. Parallel distributed processing: explorations in the microstructures of cognition, 2, 3-57.
    Said, S. E., and Dickey, D. A. (1984). Testing for unit roots in autoregressive-moving average models of unknown order. Biometrika, 71(3), 599-607.
    Sharpe, W. F. (1994). The sharpe ratio. Journal of portfolio management, 21(1),49-58.
    Vidyamurthy, G. (2004). Pairs Trading: quantitative methods and analysis (Vol. 217). John Wiley & Sons.
    Description: 碩士
    國立政治大學
    金融學系
    105352029
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0105352029
    Data Type: thesis
    DOI: 10.6814/THE.NCCU.MB.025.2018.F06
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File SizeFormat
    202901.pdf1509KbAdobe PDF2289View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback