English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113392/144379 (79%)
Visitors : 51209515      Online Users : 939
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/119091
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/119091


    Title: 增強式學習建構臺灣股價指數期貨之交易策略
    Reinforcement Learning to Construct TAIFX Trading Strategies
    Authors: 洪子軒
    Hong, Tzu-Hsuan
    Contributors: 林士貴
    蔡瑞煌

    洪子軒
    Hong, Tzu-Hsuan
    Keywords: 演算法交易
    臺股期貨
    機器學習
    增強式學習法
    SARSA
    Q-Learning
    DQN
    Algorithm trading
    Taiwan stock index future
    Machine learning
    SARSA
    Q-Learning
    DQN
    Reinforcement learning
    Date: 2018
    Issue Date: 2018-07-31 13:45:49 (UTC+8)
    Abstract: 機器學習與人工智慧的技術能夠應於金融交易之決策,並獲得創新的交易策略,本研究則希望發掘增強式學習法應用於金融交易之決策領域之可能。增強式學習法利用建構學習代理人(RL-agent)與環境交流的方式,具有自主學習策略並優化的能力,其所擁有的環境探索(Exploitation)及延遲報酬(Delayed Reward)兩項特性,與應用於金融市場的交易策略建構之問題不謀而合,因此本研究採用增強式學習法來建立臺灣股價指數期貨的交易策略。在研究的設計上,我們嘗試了三種不同的實驗設計方式、採用 Q-learning、SARSA以及DQN 三種不同的演算法進行討論。我們將 2007 年 7 月 1 日至 2017 年 12 月 31 日之臺灣股價指數期貨歷史資料設定為研究之標的,並在此區間訓練模型並分析績效表現。透過實證結果發現,在合理的實驗設計下,學習代理人能通過增強式學習模型建構出得超越大盤並穩定獲利之交易策略。
    Reinforcement Learning features the self-learning ability on strategy construction and optimization by forming the way in which RL-agent interact with environment. Two characteristics of reinforcement learning, interacting with environment and delayed reward, can be applied on decision control system, such as constructing trading strategy. Therefore, this research is to build the trading strategy on TWSE futures index by adopting reinforcement learning. In terms of system design, we examine three kinds of situation definition and algorithm, including Q-learning, SARSA and DQN. To test the availability, this article utilizes TWSE futures historical data (2007/7/1-2017/12/31) to conduct learning training and performance examination. Our findings illustrate that RL-agent would be able to construct the trading strategy which defeats the market and make profits steadily if environment is effectively defined. Moreover, the results conclude that machine learning and artificial intelligence are in favor of decisions on financial trading and pioneering trading strategy creation.
    Reference: [1] Bekiros S. D. (2010), Heterogeneous trading strategies with adaptive fuzzy Actor-Critic reinforcement learning: A behavioral approach, Journal of Economic Dynamics & Control,34 (6), 1153-1170.

    [2] Bellman, R. E. (1957). Dynamic Programming. Princeton University Press, Princeton, NJ. Republished 2003.

    [3] Fama, E. F., (1970). Efficient Capital Markets: A Review of Theory and Empirical Work. The Journal of Finance, 25(2), 383-417.

    [4] Gold, C. (2003). FX trading via recurrent Reinforcement Learning, Proceedings of the IEEE International Conference on Computational Intelligence in Financial Engineering, 363-370.

    [5] Irwin, S. H. and Park, C. H., (2007). What Do We Know About the Profitability of Technical Analysis? Journal of Economic Surveys, 21(4), 786–826.

    [6] Kearns, M., and Nevmyvaka, Y. (2013). Machine learning for market microstructure and high frequency trading. In: Easley D., López de Prado M., O’Hara M. (Eds.) High-Frequency Trading – New Realities for Traders, Markets and Regulators, 91-124.

    [7] Lu, T. H. and Y. C. Chen, (2015). Trend definition or holding strategy: What determines the profitability of candlestick charting? Journal of Banking & Finance, 61, 172-183.

    [8] Moody, J., and Saffel, M. (2001), Learning to trade via Direct Reinforcement, IEEE Transactions on Neural Network, 12, 875-889.

    [9] Moody, J., Wu, L., Liao Y., and Saffel M. (1998), Performance functions and Reinforcement Learning for trading systems and portfolios, Journal of Forecasting, 17 (56), 441-470.

    [10] Moody, J. and Wu, L. (1997). Optimization of trading systems and portfolios, in Y. Abu-Mostafa, A. N. Refenes & A. S. Weigend, eds, `Decision Technologies for Financial Engineering`, World Scientific, London, 23-35.

    [11] O, J., Lee, J., Lee, J. W., and Zhang, B.-T. (2006). Adaptive stock trading with dynamic asset allocation using reinforcement learning, Information Sciences, 176 (15), 2121-2147.

    [12] Richard, S. S. and Andrew, G. B., (1998). Reinforcement Learning: An Introduction. MIT Press.

    [13] Volodymyr, M., Koray, K., David, S., Alex, G., Ioannis, A., Daan, W., and Martin, R., (2013). Playing atari with deep reinforcement learning. arXiv preprint arXiv:1312.5602.

    [14] Volodymyr, M., Koray K., David S., Andrei A. R., Joel V., Marc G. B., Alex G., Martin R., Andreas K. F., Georg O., (2015). Human-level control through deep reinforcement learning. Nature 518(7540): 529–533, 201.
    Description: 碩士
    國立政治大學
    金融學系
    105352020
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0105352020
    Data Type: thesis
    DOI: 10.6814/THE.NCCU.MB.023.2018.F06
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File SizeFormat
    202001.pdf2657KbAdobe PDF264View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback