English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113303/144284 (79%)
Visitors : 50806092      Online Users : 612
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/118962
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/118962


    Title: 有限離散條件機率分布不相容測度之探討
    A study on the incompatibility of finite discrete conditional distributions
    Authors: 涂沁如
    Tu, Chin-Ju
    Contributors: 宋傳欽
    姜志銘

    Song, Chwan-Chin
    Jiang, Jyh-Ming

    涂沁如
    Tu, Chin-Ju
    Keywords: 條件機率矩陣
    相容性
    馬可夫鏈
    不可約化
    不相容
    Conditional probability matrix
    Compatibility
    Markov chain
    Irreducible
    Incompatibility
    Date: 2018
    Issue Date: 2018-07-27 12:18:18 (UTC+8)
    Abstract: 實務上,我們常需要建構母體的機率模型,然而當母體所涉及的隨機變數愈多,亦即維度愈高時,直接建構高維度之聯合分配的難度就越高,故我們可試著透過一組維度較低的條件分配來獲得聯合分配,而是否存在聯合分配滿足這一組條件分配,即為所謂的相容性問題。

    本文首先將二維條件分配的相容性問題跟馬可夫鏈的對應關係做詳細比較。我們發現,由於二維條件分配所對應的馬可夫鏈是非週期性的,因此,Arnold(1989)利用馬可夫鏈的理論,提出聯合分配唯一存在的充要條件,可做進一步化簡。

    給定二維條件分配,若不能找到共同的聯合分配則稱他們是不相容的;不相容的程度有各種衡量指標,而這些指標之間的關係也是值得我們研究的課題。在條件分配不相容情況下,我們先透過模擬數據的方式,對Arnold, Castillo, Sarabia (2002)及顧仲航 (2011)所提出的四種不相容測度值進行觀察,試圖進一步獲得有關他們之間關係的資訊。接著,在2x2的條件機率矩陣下,我們推導出四種不相容測度ϵ1、ϵ2、ϵ3、ϵ4以及對偶測度ϵ3*的計算公式,而且獲得2ϵ1=ϵ2=ϵ3=ϵ3*=ϵ4 的結果。最後,在2xJ的條件機率矩陣下,J>=2,我們推導出ϵ2 與ϵ3的計算公式,並且證明出ϵ2=ϵ3的關係;同時也在Ix2的條件機率矩陣下,I>=2,推出ϵ2=ϵ3*。
    In practice, we may need to construct a joint distribution for a population. However, when the dimension of the random variables corresponding to the population is higher, it is often more difficult to find such a high dimensional joint distribution. Hence, we can obtain a set of lower dimensional conditional distributions first, and then use them to find their corresponding joint distribution. If there is a joint distribution matching this set of conditional distributions, we say this set of conditional distributions is compatible.

    First, we study the relationship between the compatibility and Markov chain. Since the Markov chain corresponding to two dimensional conditional distributions is aperiodic, we can further simplfy the necessary and sufficient condition of uniquness of a joint distribution given by Arnold(1989).

    The two dimensional conditional distributions are called incompatible if there is no common joint distribution for them. There are a few measures of degree of incompatibility in literature. Our aim is to study, through the simulations first, the relation among the four measures of degree of incompatibility given by Arnold, Castillo, Sarabia (2002) and Ku (2010). We derive the computational formulas for these four measures of degree of incompatibility ϵ1, ϵ2, ϵ3, ϵ4 and the duality measure ϵ3* under 2x2 conditional probability matrices and prove that 2ϵ1=ϵ2=ϵ3=ϵ3*=ϵ4. In addition, we derive the computational formulas for ϵ2 and ϵ3 and prove that ϵ2=ϵ3 under 2xJ conditional probability matrices, where J>=2. Finally, we also show that ϵ2=ϵ3* under Ix2 conditional probability matrices, where I>=2.
    Reference: 參考文獻
    Arnold, B. C., Castillo, E., and Sarabia, J. M. (2002). Exact and near compatibility of discrete conditional distributions. Comput. Stat. Data Anal., 40(2):231–252.
    Arnold, B. C. and Press, S. J. (1989). Compatible conditional distributions. Journal of the American Statistical Association, 84(405):152–156.
    Song, C.-C., Li, L.-A., Chen, C.-H., Jiang, T. J., and Kuo, K.-L. (2010). Compatibility of finite discrete conditional distributions. Statistica Sinica 20 (2010).
    Yates, R. and Goodman, D. (2005). Probability and Stochastic Processes: A Friendly Introduction for Electrical and Computer Engineers. John Wiley & Sons, second edition.
    黃文璋(1995). 隨機過程. 華泰文化事業股份有限公司.
    顧仲航(2011). 以特徵向量法解條件分配相容性問題. 國立政治大學應用數學系碩士論文.
    Description: 碩士
    國立政治大學
    應用數學系
    104751007
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G1047510071
    Data Type: thesis
    DOI: 10.6814/THE.NCCU.MATH.005.2018.B01
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File SizeFormat
    007101.pdf917KbAdobe PDF215View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback