English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51062609      Online Users : 909
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 理學院 > 應用數學系 > 學位論文 >  Item 140.119/118959
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/118959


    Title: 逆轉勝機率之計算及其在台灣運動彩券投注策略上的應用
    A computation on the probability of turning defeat into victory and its application to the betting strategy on Taiwan Sports Lottery
    Authors: 楊顗錞
    Yang, Yi-Chun
    Contributors: 宋傳欽
    姜志銘

    Song, Chwan-Chin
    Jiang, Jyh-Ming

    楊顗錞
    Yang, Yi-Chun
    Keywords: 逆轉勝機率
    二元常態模型
    運動彩券
    美國職業籃球
    Probability of turning defeat into victory
    Bivariate normal model
    Sports lottery
    National basketball association
    Date: 2018
    Issue Date: 2018-07-27 12:13:02 (UTC+8)
    Abstract: 本研究旨在探討逆轉勝問題及其擴展應用,依據美國職業籃球(NBA)比賽歷史資料顯示,於比賽前三節結束時落後之球隊,最終仍有機會贏得勝利。Gill(2000)假定了主、客隊的前三節得分和它們在第四節的分數皆具有常態分配,而且假設主、客隊在前三節落後之情況下,第四節得以逆轉勝的分數之條件分布為常態時,推導出逆轉勝機率之計算公式。
    然而依常理,前三節得分分差的大小對逆轉勝機率應有不同程度的影響,為更貼近真實賽情,本研究擴展了Gill(2000)模型,引入二元常態模型探討逆轉勝機率之計算公式。同時利用NBA歷年賽事資料對二元常態模型與Gill(2000)模型進行預測逆轉勝機率之比較,我們發覺二元常態模型在預測逆轉勝機率較Gill(2000)模型更精準。
    最後本研究將上述結果進一步應用至台灣運動彩券分析上,利用二元常態模型計算出投注主隊或客隊獲利金額之期望值,以作為台灣運動彩券讓分盤是否投注之決策依據。然因資料可能不是非常符合二元常態模型,以致實際平均獲利在精準度上未達理想,為保守起見,因此下注1元時的獲利金額之期望值至少0.5元時,始建議下注。在前述決策方式下,我們發現下注客隊時,可獲得平均0.1079元的利潤。
    This study aims to explore the problem of turning defeat into victory and its extended application. According to the historical data of National Basketball Association, the team that falls behind on the first three quarters of the game will still have a chance to win. Gill(2000) assumes that the home team and away team scores at the end of the third quarter and during the fourth quarter are normally distributed. To give the formulas of the conditional probabilities of turning defeat into victory, Gill(2000) further assumes that each of these two corresponding conditional distributions follows a normal distribution.
    In practice, the difference of scores during the fourth quarter depends not only on which teams falls behind but also on the difference of scores of these two teams at the end of the third quarter. Therefore, we extend Gill(2000) model to introduce a bivariate normal distribution model. We then give turning defeat into probability formulas by using this new model. Using NBA historical data, we compare our bivariate normal model with Gill(2000) model and find that the bivariate normal model is better than that of Gill(2000).
    This study also applies our bivariate normal model to analyze Taiwan sports lottery. We calculate the expected profit of betting a team to decide whether to bet on this team through Taiwan sports lottery. Although data may not fit the bivariate normal model well and prediction is not accurate enough, we still suggest people interested in gaming could bet on the teams having the expected profit at least 0.5 NTD per 1 NTD wager. Under such circumstances, it is found that our average profit per 1 NTD betting is still 0.1079 NTD on the away team.
    Reference: Cooper, H., DeNeve, K. M., and Mosteller, F. (1992). Predicting professional sports game outcomes from intermediate game scores. CHANCE.
    Gill, P. S. (2000). Late-game reversals in professional basketball, football, and hockey. The American Statistician,54(2):94–99.
    台灣運動彩券(2008a)。台灣運彩銷售破百億-半年挹注運動發展基金及公益 10 億; https://www.sportslottery.com.tw/zh/web/guest/news-release。
    台灣運動彩券(2008b)。運動彩券投注規範;https://www.sportslottery.com.tw/zh/web/ guest/sports-regulation。
    林桓(2008)。運動特種公益彩券管理辦法相關法律問題。行政體育員會研究Sac-Res-096-02。
    周錫洋(2005)。運動彩券之行銷策略研究。台大學業管理學系碩士在職進修班 。
    Description: 碩士
    國立政治大學
    應用數學系
    104751005
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0104751005
    Data Type: thesis
    DOI: 10.6814/THE.NCCU.MATH.002.2018.B01
    Appears in Collections:[應用數學系] 學位論文

    Files in This Item:

    File SizeFormat
    100501.pdf1527KbAdobe PDF220View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback