政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/118937
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113160/144130 (79%)
Visitors : 50755050      Online Users : 623
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大典藏 > College of Commerce > Department of MIS > Theses >  Item 140.119/118937
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/118937


    Title: 從大數據創造價值 : 金融產業的多個案研究
    Generating Value from Big Data: A Multiple Case Study in Financial Industry
    Authors: 蔡佑晟
    Tsai, Yu-Chen
    Contributors: 尚孝純
    Shang, Shari S. C.
    蔡佑晟
    Tsai, Yu-Chen
    Keywords: 大數據
    商業價值
    數據導向決策
    Big data
    Business value
    Data-driven decision-making
    Date: 2018
    Issue Date: 2018-07-27 11:37:40 (UTC+8)
    Abstract: 隨著社群和分析技術的快速發展,大數據已經成為許多產業中的熱門議題。眾多知名跨國公司都從大數據應用中獲得了巨大的價值,如: Google、Walmart、和Amazon等。然而除了這些具有代表性的成功例子之外,在大數據上進行大量的投入並不一定能帶來實質的收益,商業決策者們仍然對大數據科技的回報持懷疑態度。

    本研究對數據導向決策的案例和大數據應用進行了系統化的文獻回顧,並歸納出大數據可能創造的效益,以及一些可能影響大數據創造價值的相關關鍵因素。之後,此研究將與金融公司的高階資訊主管進行深度的訪談與了解。最後,本研究透過對金融產業的跨個案橫向分析,期望能為大數據的應用提供相關的發現與見解。
    With rapid advances in social and analytics technology, Big Data has become a popular subject in many industries. Numerous well-known multinational companies, such as Google, Walmart, and Amazon, reported deriving enormous value from Big Data applications. However, except for these emblematic examples, there is no promise that large investments in Big Data can result in material benefits. Business decision-makers remain doubtful as to returns from Big Data technologies.

    Performing a systematic literature review of data-driven decision-making cases and Big Data applications, this study identified several possible benefits that may be generated from Big Data, and identified several Big Data-related key factors that may affect value creation. Then, this study conducted in-depth interviews with senior IT managers from selected financial companies. Finally, by a cross-sectional analysis of financial industry, this study intends to provide insights into Big Data implementation.
    Reference: Aloysius, J. A., Hoehle, H., Goodarzi, S., & Venkatesh, V. (2016). Big data initiatives in retail environments: Linking service process perceptions to shopping outcomes. Annals of operations research, 1-27.
    Barr, M. S., Koziara, B., Flood, M. D., Hero, A., & Jagadish, H. V. (2018). Big Data in Finance: Highlights from the Big Data in Finance Conference Hosted at the University of Michigan October 27-28, 2016.
    Baxter, P., & Jack, S. (2008). Qualitative case study methodology: Study design and implementation for novice researchers. The qualitative report, 13(4), 544-559.
    Beath, C., Becerra-Fernandez, I., Ross, J., & Short, J. (2012). Finding value in the information explosion. MIT Sloan Management Review, 53(4), 18.
    Bertino, E., & Ferrari, E. (2018). Big Data Security and Privacy. In A Comprehensive Guide Through the Italian Database Research Over the Last 25 Years (pp. 425-439). Springer, Cham.
    Black, B. L., Cowens-Alvarado, R., Gershman, S., & Weir, H. K. (2005). Using data to motivate action: the need for high quality, an effective presentation, and an action context for decision-making. Cancer Causes and Control, 16, 15-25.
    Blazquez, D., & Domenech, J. (2017). Big Data sources and methods for social and economic analyses. Technological Forecasting and Social Change.
    Brynjolfsson, E., Hitt, L. M., & Kim, H. H. (2011). Strength in numbers: How does data-driven decisionmaking affect firm performance?.
    Bughin, J. (2016). Big data, Big bang?. Journal of Big Data, 3(1), 2.
    Bughin, J., Chui, M., & Manyika, J. (2010). Clouds, big data, and smart assets: Ten tech-enabled business trends to watch. McKinsey quarterly, 56(1), 75-86.
    Cai, L., & Zhu, Y. (2015). The challenges of data quality and data quality assessment in the big data era. Data Science Journal, 14.
    Chen, H., Chiang, R. H., & Storey, V. C. (2012). Business intelligence and analytics: from big data to big impact. MIS quarterly, 1165-1188.
    Chen, H. M., Kazman, R., Haziyev, S., & Hrytsay, O. (2015, May). Big data system development: An embedded case study with a global outsourcing firm. In Proceedings of the First International Workshop on BIG Data Software Engineering (pp. 44-50). IEEE Press.
    Chen, M., Hao, Y., Hwang, K., Wang, L., & Wang, L. (2017). Disease prediction by machine learning over big data from healthcare communities. IEEE Access, 5, 8869-8879.
    Das, N., Das, L., Rautaray, S. S., & Pandey, M. (2018). Big Data Analytics for Medical Applications.
    Davenport, T. H., & Dyché, J. (2013). Big data in big companies. International Institute for Analytics, 3.
    Ding, G., Wu, Q., Wang, J., & Yao, Y. D. (2014). Big spectrum data: The new resource for cognitive wireless networking. arXiv preprint arXiv:1404.6508.
    Emani, C. K., Cullot, N., & Nicolle, C. (2015). Understandable big data: a survey. Computer science review, 17, 70-81.
    Evans, L., & Kitchin, R. (2018). A smart place to work? Big data systems, labour, control and modern retail stores. New Technology, Work and Employment, 33(1), 44-57.
    Fang, B., & Zhang, P. (2016). Big data in finance. In Big Data Concepts, Theories, and Applications (pp. 391-412). Springer, Cham.
    Fouad, M. M., Oweis, N. E., Gaber, T., Ahmed, M., & Snasel, V. (2015). Data mining and fusion techniques for WSNs as a source of the big data. Procedia Computer Science, 65, 778-786.
    Gandomi, A., & Haider, M. (2015). Beyond the hype: Big data concepts, methods, and analytics. International Journal of Information Management, 35(2), 137-144.
    Gregor, S., Martin, M., Fernandez, W., Stern, S., & Vitale, M. (2006). The transformational dimension in the realization of business value from information technology. The Journal of Strategic Information Systems, 15(3), 249-270.
    Grover, V., Chiang, R. H., Liang, T. P., & Zhang, D. (2018). Creating Strategic Business Value from Big Data Analytics: A Research Framework. Journal of Management Information Systems, 35(2), 388-423.
    How big data analytics yields big gains. (2017, Jul 12). Electronics for You, Retrieved from https://search.proquest.com/docview/1918006741?accountid=10067
    Ikemoto, G. S., & Marsh, J. A. (2007). chapter 5 Cutting Through the “Data‐Driven” Mantra: Different Conceptions of Data‐Driven Decision Making. Yearbook of the National Society for the Study of Education, 106(1), 105-131.
    Intel IT center (2012). Peer Research: Big Data Analytics. Intel’s IT Manager Survey on How Organizations Are Using Big Data.
    Jagadish, H. V., Gehrke, J., Labrinidis, A., Papakonstantinou, Y., Patel, J. M., Ramakrishnan, R., & Shahabi, C. (2014). Big data and its technical challenges. Communications of the ACM, 57(7), 86-94.
    Janssen, M., van der Voort, H., & Wahyudi, A. (2017). Factors influencing big data decision-making quality. Journal of Business Research, 70, 338-345.
    Kabir, N., & Carayannis, E. (2013, January). Big data, tacit knowledge and organizational competitiveness. In Proceedings of the 10th International Conference on Intellectual Capital, Knowledge Management and Organisational Learning: ICICKM (p. 220).
    Katal, A., Wazid, M., & Goudar, R. H. (2013, August). Big data: issues, challenges, tools and good practices. In Contemporary Computing (IC3), 2013 Sixth International Conference on (pp. 404-409). IEEE.
    Kitchin, R., & McArdle, G. (2016). What makes Big Data, Big Data? Exploring the ontological characteristics of 26 datasets. Big Data & Society, 3(1), 2053951716631130.
    LaValle, S., Lesser, E., Shockley, R., Hopkins, M. S., & Kruschwitz, N. (2011). Big data, analytics and the path from insights to value. MIT sloan management review, 52(2), 21.
    Li, S., & Gao, J. (2016). Security and Privacy for Big Data. In Big Data Concepts, Theories, and Applications (pp. 281-313). Springer, Cham.
    Lohr, S. (2012). The age of big data. New York Times, 11(2012).
    Madden, S. (2012). From databases to big data. IEEE Internet Computing, 16(3), 4-6.
    Mandinach, E.B., Honey, M., & Light, D. (2006). A theoretical framework for data-driven decision making. Paper presented at the annual meeting of the American Educational Research Association, San Francisco.
    Marsh, J. A., Pane, J. F., & Hamilton, L. S. (2006). Making sense of data-driven decision making in education.
    McAfee, A., Brynjolfsson, E., & Davenport, T. H. (2012). Big data: the management revolution. Harvard business review, 90(10), 60-68.
    Mikalef, P., Framnes, V., Danielsen, F., Krogstie, J., & Olsen, D. H. (2017). Big data analytics capability: antecedents and business value. In Proceedings of the 21st Pacific Asia conference on information systems (PACIS).
    Mirani, R., & Lederer, A. L. (1998). An instrument for assessing the organizational benefits of IS projects. Decision Sciences, 29(4), 803-838.
    Neff, G. (2013). Why big data won`t cure us. Big data, 1(3), 117-123.
    Ong, K. L., De Silva, D., Boo, Y. L., Lim, E. H., Bodi, F., Alahakoon, D., & Leao, S. (2016). Big data applications in engineering and science. In Big Data Concepts, Theories, and Applications (pp. 315-351). Springer, Cham.
    Prabhakar, S., & Maves, L. (2017). Big Data Analytics and Visualization: Finance. In Big Data and Visual Analytics (pp. 219-229). Springer, Cham.
    Provost, F., & Fawcett, T. (2013). Data science and its relationship to big data and data-driven decision making. Big data, 1(1), 51-59.
    Ren, S. J., Fosso Wamba, S., Akter, S., Dubey, R., & Childe, S. J. (2017). Modelling quality dynamics, business value and firm performance in a big data analytics environment. International Journal of Production Research, 55(17), 5011-5026.
    Rindler, A., McLowry, S., & Hillard, R. (2013). Big Data Definition. MIKE2. 0, the open source methodology for Information Development.
    Russom, P. (2014). TDWI Best Practices Report: Big Data Analytics (Best Practices)(pp. 1–35). The Data Warehouse Institute (TDWI). Retrieved from on, 15.
    Schroeck, M., Shockley, R., Smart, J., Romero-Morales, D., & Tufano, P. (2012). Analytics: the real-world use of big data: How innovative enterprises extract value from uncertain data, Executive Report. IBM Institute for Business Value and Said Business School at the University of Oxford.
    Shah, S., Horne, A., & Capellá, J. (2012). Good data won`t guarantee good decisions. Harvard Business Review, 90(4).
    Shim, J. P., French, A. M., Guo, C., & Jablonski, J. (2015). Big Data and Analytics: Issues, Solutions, and ROI. CAIS, 37, 39.
    Simon, P. (2013). Too big to ignore: The business case for big data (Vol. 72). John Wiley & Sons.
    Sivarajah, U., Kamal, M. M., Irani, Z., & Weerakkody, V. (2017). Critical analysis of Big Data challenges and analytical methods. Journal of Business Research, 70, 263-286.
    Srivastava, R. (2018). Big Data Retail Analysis and Product Distribution (BREAD) Model for Sales Prediction. Indian Journal of Computer Science, 3(1), 7-16.
    Swan, M. (2013). The quantified self: Fundamental disruption in big data science and biological discovery. Big Data, 1(2), 85-99.
    Tankard, C. (2012). Big data security. Network security, 2012(7), 5-8.
    Wamba, S. F., Akter, S., Edwards, A., Chopin, G., & Gnanzou, D. (2015). How ‘big data’can make big impact: Findings from a systematic review and a longitudinal case study. International Journal of Production Economics, 165, 234-246.
    Wamba, S. F., Gunasekaran, A., Akter, S., Ren, S. J. F., Dubey, R., & Childe, S. J. (2017). Big data analytics and firm performance: Effects of dynamic capabilities. Journal of Business Research, 70, 356-365.
    Wan, J., Tang, S., Li, D., Wang, S., Liu, C., Abbas, H., & Vasilakos, A. V. (2017). A manufacturing big data solution for active preventive maintenance. IEEE Transactions on Industrial Informatics, 13(4), 2039-2047.
    Xu, L., & Shi, W. (2016). Security Theories and Practices for Big Data. In Big Data Concepts, Theories, and Applications (pp. 157-192). Springer, Cham.
    Zhang, Y., Ren, S., Liu, Y., & Si, S. (2017). A big data analytics architecture for cleaner manufacturing and maintenance processes of complex products. Journal of Cleaner Production, 142, 626-641.
    Zhong, R. Y., Newman, S. T., Huang, G. Q., & Lan, S. (2016). Big Data for supply chain management in the service and manufacturing sectors: Challenges, opportunities, and future perspectives. Computers & Industrial Engineering, 101, 572-591.
    Description: 碩士
    國立政治大學
    資訊管理學系
    105356002
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0105356002
    Data Type: thesis
    DOI: 10.6814/THE.NCCU.MIS.006.2018.A05
    Appears in Collections:[Department of MIS] Theses

    Files in This Item:

    File SizeFormat
    600201.pdf1112KbAdobe PDF2218View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback