English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51086197      Online Users : 912
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 會計學系 > 學位論文 >  Item 140.119/118591
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/118591


    Title: 股價波動與財務預警-數據分析觀點
    Stock price volatility and financial warning -a data analytics perspective
    Authors: 吳昱萱
    Wu-, Yu-Hsuan
    Contributors: 諶家蘭
    吳昱萱
    Wu- Yu-Hsuan
    Keywords: 股價波動
    財經新聞
    情緒分析
    財務預警
    Stock price volatility
    Financial news
    Sentiment analysis
    Financial warning
    Date: 2018
    Issue Date: 2018-07-11 17:20:53 (UTC+8)
    Abstract: 投資者作投資決策前,會先就公開資訊作風險評估,其中新聞是投資者能即時取得資訊的重要管道。投資者能從新聞了解企業是否面臨潛在的經營和財務風險等,這些訊息可幫助投資者作決策,進而反映在股價上,造成股價波動。

    本研究以2007年至2017年台灣931家上市公司為研究對象,運用情緒分析,使用財經新聞財務預警之情緒字典衡量公司財務預警程度,探討公司財務預警相關財經新聞情緒和新聞篇數是否影響股價波動,研究結果顯示,公司當日、昨天和前天財務預警相關之財經新聞情緒分析和新聞篇數與公司當日之股價波動顯著相關。當公司當日、昨天和前天相關新聞中財務預警相關的正(負)向字詞佔比越高時,當日股價波動越大,同時使用財務預警相關之正向字和負向字衡量新聞整體情緒時,亦發現公司當日、昨天和前天相關財經新聞的整體情緒越偏負面,當日股價波動越大。
    Investors may obtain public information, such as financial reporting, to make risk assessment before the investment decisions. Reading financial news articles is an important way of obtaining instant message about companies’ recent situations. It helps investors realize if the companies’ face potential operational or financial risk. The information financial news conveys may help investors make decisions which will reflect on the stock price of the companies.

    This study uses 931 listed companies in Taiwan Stock Exchange(TWSE) during the eleven-year period 2007-2017 to empirically examine the association between the stock price volatility and the sentiment and quantity of financial warning related financial news by using sentiment analysis. This study employs the financial warning related sentiment dictionary of financial news to measure companies’ financial warning degree.The results show that the stock price volatility is significantly affected by today’s financial news’, yesterday financial news’, and the day before yesterday financial news’ quantity and sentiment. The stock price volatiles more dramatically when the proportion of positive(negative) words in fianancial news is higher. Furthermore, this study simultaneously considers positive and negative words as the company’s financial warning sentiment. The result shows that the stock price volatiles more dramatically when the financial warning sentiment more negative.
    Reference: 一、中文參考文獻
    林宜萱,2013,財經領域情緒辭典之建置與其有效性之驗證-以財經新聞為元件,國立臺灣大學會計學系碩士論文。
    許馨予,2016,股票價格波動性與新聞情緖分析之關聯性研究,國立政治大學會計學系碩士論文。
    張溢晃,2009,財經新聞語料中所隱含之樂悲觀情緒在企業財務危機預警模型構建上的應用,銘傳大學財務金融學系在職專班碩士論文。
    詹世煌、許溪南與謝宗祐,2003,股價波動性之影響因素,風險管理學報,第五卷,第2期:167-193。
    諶家蘭,2017,創新行動金融商務科技之跨領域整合研究,科技部計畫之結案報告。
    二、英文參考文獻
    Albertazzi, U., & Gambacorta, L. 2009. Bank profitability and the business cycle. Journal of Financial Stability, 5(4): 393-409.
    Alizadeh, S., Brandt, M., & Diebold, F. 1999. Range-based estimation of stochastic volatility models or exchange rate dynamics are more interesting than you think.
    Altman, E. I. 1968. Financial ratios, discriminant analysis and the prediction of corporate bankruptcy. The Journal of Finance, 23(4): 589-609.
    Astutik, E. D., Surachman, S., & Djazuli, A. 2015. The effect of fundamental and technical variables on stock price (Study on manufacturing companies listed in Indonesia Stock Exchange). Journal of Economics, Business & Accountancy Ventura, 17(3): 345-352.
    Bae, S. C., & Jo, H. 1999. The impact of information release on stock price volatility and trading volume: The rights offering case. Review of Quantitative Finance and Accounting, 13(2): 153-169.
    Barber, B. M., & Odean, T. 2007. All that glitters: The effect of attention and news on the buying behavior of individual and institutional investors. The Review of Financial Studies, 21(2): 785-818.
    Beaver, W. H. 1966. Financial ratios as predictors of failure. Journal of Accounting Research: 71-111.
    Bolton, R. J., & Hand, D. J. 2002. Statistical fraud detection: A review. Statistical Science: 235-249.
    Chen, H., De, P., Hu, Y., & Hwang, B. H. 2014. Wisdom of crowds: The value of stock opinions transmitted through social media. The Review of Financial Studies, 27(5): 1367-1403.
    Chen, P., & Zhang, G. 2007. How do accounting variables explain stock price movements? Theory and evidence. Journal of Accounting and Economics, 43(2): 219-244.
    Christie, A. A. 1990. Aggregation of test statistics: An evaluation of the evidence on contracting and size hypotheses. Journal of Accounting and Economics, 12(1-3):15-36.
    Dalnial, H., Kamaluddin, A., Sanusi, Z. M., & Khairuddin, K. S. 2014. Detecting fraudulent financial reporting through financial statement analysis. Journal of Advanced Management Science Vol, 2(1).
    Dechow, P. M., Ge, W., Larson, C. R., & Sloan, R. G. 2011. Predicting material accounting misstatements. Contemporary Accounting Research, 28(1), 17-82.
    DellaVigna, S., & Pollet, J. M. 2009. Investor inattention and Friday earnings announcements. The Journal of Finance, 64(2): 709-749.
    Ferguson, N. J., Philip, D., Lam, H. Y., & Guo, J. M. 2015. Media content and stock returns: The predictive power of press , Multinational Finance Journal 19: 1-31
    Feroz, E. H., Park, K., & Pastena, V. S. (1991). The financial and market effects of the SEC`s accounting and auditing enforcement releases. Journal of Accounting Research: 107-142.
    FitzPatrick, P. J. 1932. A comparison of the ratios of successful industrial enterprises with those of failed companies. Certified Public Accountant 12(October, November, December): 598-605, 656-662, 727-731.
    Floros, C. 2009. Modelling volatility using high, low, open and closing prices: evidence from four S&P indices. International Research Journal of Finance and Economics, 28: 198-206.
    French, K. R., Schwert, G. W., & Stambaugh, R. F. 1987. Expected stock returns and volatility. Journal of financial Economics, 19(1): 3-29.
    Gallant, A. R., Hsu, C. T., & Tauchen, G. 1999. Using daily range data to calibrate volatility diffusions and extract the forward integrated variance. Review of Economics and Statistics, 81(4): 617-631.
    Gray, G. L., & Debreceny, R. S. 2014. A taxonomy to guide research on the application of data mining to fraud detection in financial statement audits. International Journal of Accounting Information Systems, 15(4): 357-380.
    Gupta, R., & Gill, N. S. 2012. Financial statement fraud detection using text mining. International Journal of Advanced Computer Science and Applications, 3(12):189-191.
    Hatta, A. J., & Dwiyanto, B. S. 2012. The company fundamental factors and systematic risk in increasing stock price. Journal of Economics, Business Accountancy Ventura, 15(2): 245-256.
    Ho, K. Y., Shi, Y., & Zhang, Z. 2013. How does news sentiment impact asset volatility? Evidence from long memory and regime-switching approaches. The North American Journal of Economics and Finance, 26: 436-456.
    Hunjra, A. I., Ijaz, M. S., Chani, M. I., & Mustafa, U. 2014. Impact of Dividend Policy, Earning per Share, Return on Equity, Profit after Tax on Stock Prices. Internation Journal of Economics and Empirical Research, 2(3): 109–115.
    Hussainey, K., Oscar Mgbame, C., & Chijoke-Mgbame, A. M. 2011. Dividend policy and share price volatility: UK evidence. The Journal of Risk Finance,12(1): 57-68.
    Ikhatua, O. J. 2013. Accounting information and stock volatility in the Nigerian Capital Market: A GARCH analysis approach. International Review of Management and Business Research, 2(1): 265.
    Jayakody, S. G. 2017. The Impact of the Sri Lankan Civil War on the Stock Market Performances. International Journal of Economics and Financial Issues, 7(1).
    John, E. I. 2018. Macroeconomic Determinants of Stock Market Performance in Nigeria: An Econometric Approach. Indonesian Journal of Management and Business Economics, 1(1).
    Kanapickienė, R., & Grundienė, Ž. 2015. The model of fraud detection in financial statements by means of financial ratios. Procedia-Social and Behavioral Sciences, 213: 321-327.
    Karpoff, J. M. 1987. The relation between price changes and trading volume: A survey. Journal of Financial and Quantitative Analysis, 22(1): 109-126.
    Khan, K. I., Aamir, M., Qayyum, A., Nasir, A., & Khan, M. I. 2011. Can dividend decisions affect the stock prices: A case of dividend paying companies of KSE. International Research Journal of Finance and Economics, 76(68): 69-74.
    Kinney Jr, W. R., & McDaniel, L. S. 1989. Characteristics of firms correcting previously reported quarterly earnings. Journal of Accounting and Economics,11(1): 71-93.
    Kurihara, Y. 2006. The relationship between exchange rate and stock prices during the quantitative easing policy in Japan. International Journal of Business, 11(4):375.
    Liljeblom, E., & Stenius, M. 1997. Macroeconomic volatility and stock market volatility: empirical evidence on Finnish data. Applied Financial Economics, 7(4): 419-426.
    Lin, F., Liang, D., & Chen, E. 2011. Financial ratio selection for business crisis prediction. Expert Systems with Applications, 38(12): 15094-15102.
    Li, Q., Wang, T., Gong, Q., Chen, Y., Lin, Z., & Song, S. K. 2014. Media-aware quantitative trading based on public Web information. Decision Support Systems,61: 93-105.
    Lobo, G. J., & Tung, S. S. 2000. Financial analysts` earnings forecast dispersion and intraday stock price variability around quarterly earnings announcements. Review of Quantitative Finance and Accounting, 15(2): 137-151.
    Martani, D., & Khairurizka, R. 2009. The effect of financial ratios, firm size, and cash flow from operating activities in the interim report to the stock return. Chinese Business Review, 8(6): 44.
    Masum, A. 2014. Dividend policy and its impact on stock price–A study on commercial banks listed in Dhaka stock exchange. Global Disclosure of Economics and Business, 3(1): 9-20.
    Nazir, M. S., Nawaz, M. M., Anwar, W., & Ahmed, F. 2010. Determinants of stock price volatility in karachi stock exchange: The mediating role of corporate dividend policy. International Research Journal of Finance and Economics, 55(55): 100-107.
    Ngai, E. W. T., Hu, Y., Wong, Y. H., Chen, Y., & Sun, X. 2011. The application of data mining techniques in financial fraud detection: A classification framework and an academic review of literature. Decision Support Systems, 50(3):559-569.
    Ohlson, J. A. 1980. Financial ratios and the probabilistic prediction of bankruptcy. Journal of Accounting Research: 109-131.
    Persons, O. S. 1995. Using financial statement data to identify factors associated with fraudulent financial reporting. Journal of Applied Business Research, 11(3):38.
    Piškorec, M., Antulov-Fantulin, N., Novak, P. K., Mozetič, I., Grčar, M., Vodenska, I.,& Šmuc, T. 2014. Cohesiveness in financial news and its relation to market volatility. Scientific Reports, 4: 5038.
    Profilet, K. A., & Bacon, F. W. 2013. Dividend policy and stock price volatility in the US equity capital market. ASBBS Proceedings, 20(1): 219.
    Raj, P., & Pandikumar, M. P. 2017. Historical volatility of NIFTY Returns and Demonetisation-An Overview. Sumedha Journal of Management, 6(2): 4-21.
    Sadorsky, P. 2003. The macroeconomic determinants of technology stock price volatility. Review of Financial Economics, 12(2): 191-205.
    Schumaker, R. P., Zhang, Y., Huang, C. N., & Chen, H. 2012. Evaluating sentiment in financial news articles. Decision Support Systems, 53(3): 458-464.
    Schwert, G. W. 1989. Why does stock market volatility change over time?. The Journal of Finance, 44(5): 1115-1153.
    Schwert, G. W. 1990. Stock market volatility. Financial Analysts Journal, 46(3): 23-34.
    Shi, Y., Ho, K. Y., & Liu, W. M. 2016. Public information arrival and stock return volatility: Evidence from news sentiment and Markov Regime-Switching Approach. International Review of Economics & Finance, 42: 291-312.
    So, M. K., Lam, K., & Li, W. K. 1997. An empirical study of volatility in seven Southeast Asian stock markets using ARV models. Journal of Business Finance & Accounting, 24(2): 261-276.
    Tetlock, P. C. 2007. Giving content to investor sentiment: The role of media in the stock market. The Journal of Finance, 62(3): 1139-1168.
    Thorbecke, W. 1997. On stock market returns and monetary policy. The Journal of Finance, 52(2): 635-654.
    Throckmorton, C. S., Mayew, W. J., Venkatachalam, M., & Collins, L. M. 2015. Financial fraud detection using vocal, linguistic and financial cues. Decision Support Systems, 74: 78-87.
    Vuolteenaho, T. 2002. What Drives Firm‐Level Stock Returns?. The Journal of Finance, 57(1): 233-264.
    Wang, S. 2010. A Comprehensive Survey of Data Mining-Based Accounting-Fraud Detection Research. 2010 International Conference on Intelligent Computation Technology and Automation, 1: 50-53.
    Wang, X., Wu, C., & Xu, W. 2015. Volatility forecasting: The role of lunch-break returns, overnight returns, trading volume and leverage effects. International Journal of Forecasting, 31(3): 609-619.
    Xiong, R., Nichols, E. P., & Shen, Y. 2015. Deep learning stock volatility with google domestic trends. arXiv preprint arXiv:1512.04916.
    Yang, D., & Zhang, Q. 2000. Drift‐independent volatility estimation based on high, low, open, and close prices. The Journal of Business, 73(3): 477-492.
    Yu, Y., Duan, W., & Cao, Q. 2013. The impact of social and conventional media on firm equity value: A sentiment analysis approach. Decision Support Systems,55(4): 919-926
    Zainudin, E. F., & Hashim, H. A. 2016. Detecting fraudulent financial reporting using financial ratio. Journal of Financial Reporting and Accounting, 14(2): 266-278.
    Zhang, F. 2010. High-frequency trading, stock volatility, and price discovery.
    Description: 碩士
    國立政治大學
    會計學系
    105353020
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0105353020
    Data Type: thesis
    DOI: 10.6814/THE.NCCU.ACCT.023.2018.F07
    Appears in Collections:[會計學系] 學位論文

    Files in This Item:

    File SizeFormat
    302001.pdf1856KbAdobe PDF231View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback