English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51072209      Online Users : 948
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/118537
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/118537


    Title: 基于神經網路模型的台指選擇權定價實證分析
    The Study of TXO Option Pricing Based on The Neural Network
    Authors: 唐寧
    Tang, Ning
    Contributors: 廖四郎
    Liao, Szu-Lang
    唐寧
    Tang,Ning
    Keywords: 選擇權定價
    深度學習
    神經網路模型
    Option pricing
    Deep learning
    Neural network model
    Date: 2018
    Issue Date: 2018-07-10 15:34:36 (UTC+8)
    Abstract: 在金融衍生性商品中,選擇權一直是一種重要的基礎性產品,因此選擇權定價一直學者研究的重點。近40年來選擇權發展中最重要的成果就是Black- Scholes 選擇權定價模型。然而由于該模型理想化的假設,導致它在真實定價過程中容易出現明顯的誤差。但是神經網路模型有著利用資料開始自我學習的特性,可以不用假設條件,單純由資料確定模型的結構和參數。
    本文選取2008年到2018年的臺灣加權指數選擇權(TXO)日資料作爲研究對象,利用Python構建NN神經網路模型,將買權資料分爲買權完整資料、買權價內資料、買權價平資料、買權價外資料、買權上漲趨勢資料、買權下跌趨勢資料共6類資料。再加上賣權的6類資料,一共12大類資料。分別進行訓練模型。最後採用MSE、MAE兩種誤差指標來評價不同模型的預測精度。
    最後發現NN神經網路模型的定價精度大多優于BS模型的期權定價效果。同時NN模型的價外選擇權資料的定價效果更精確,幷且按漲跌趨勢劃分後的選擇權資料定價效果也比完整資料的定價效果要好。
    Option is a significant basic product in financial derivatives. How to price an option is a major issue to many scholars. During the last 40 years, Black-Scholes option pricing model has been considered as the crucial research achievement. However, obvious bias occurs in the real market pricing procedure due to the idealized assumption of this model. The neural network model has the characteristic of using data to start self-learning, so the structure and parameters of the model can be determined by data without assuming conditions.
    This thesis took TXO(2008-2018) as a research object, and used the Python to structure Neural Network(NN) model. Then the data of call option have been divided into 6 types , including‘all data’ ,‘in-the-price data’, ‘at-the-price data’, ‘out-the-price data’, ‘up-trend data’ and‘down-trend data’. The same classification is applied to the put option data. A total of 12 types of data have been trained by NN model separately. Finally, MSE and MAE are used to evaluate the accuracy of the forecasts of different models.
    In conclusion, the pricing accuracy of the neural network model is substantially better than that of the Black-Scholes model. Meanwhile , the pricing effect of out-the-price option data is more accurate, and the pricing of up-trend option data has a good effect either.
    Reference: [1] 李沃墻.(2000).台股重設型權證的評價績效比較陰.真理財金學
    報,91-112
    [2] 周大鵬. (2008). 基於B-P神經網路的期權定價研究.
    (Doctoral dissertation,中國人民大學).
    [3] 馬發強. (2012). 基於RBF神經網路的期權定價研究.
    (Doctoral dissertation, 中南大學).
    [4] 張鴻彥, & 林輝. (2007). 基于小波神經網絡的期權定價模型.
    東南大學學報 (自然科學版), 37(4), 716-720.
    [5] 董瑩, 烏日嘎, & 齊淑華. (2013). 基於bp神經網路的期權定
    價模型. 魯東大學學報(自然科學版), 29(3), 196-199.
    [6] 劉志强. (2005). 基于神經網路的期權定價模型. (Doctoral
    dissertation, 重慶大學).
    [7] 劉旭彬. (2011). 基於神經網路方法的期權定價應用研究.
    (Doctoral dissertation, 暨南大學).
    [8] 譚朵朵. (2008). 基於bp神經網路的s&p500指數期權定價. 統
    計與資訊理論壇, 23(11), 40-43.
    [9] Amilon, H. (2003). A neural network versus
    black– scholes: a comparisonof pricing and hedging
    performances.Journal of Forecasting, 22(4), 317-335.
    [10] Gençay, R., & Qi, M. (2001). Pricing and hedging
    derivative securities with neural networks: bayesian
    regularization, early stopping, and bagging. IEEE
    Trans Neural Netw, 12(4), 726-734.
    [11] Hinton, G. E. (2012). A practical guide to training
    restricted Boltzmann machines. In Neural networks:
    Tricks of the trade(pp. 599-619). Springer, Berlin,
    Heidelberg.
    [12] Huang, S. C., & Wu, T. K. (2006, September). A hybrid
    unscented Kalman filter and support vector machine
    model in option price forecasting. In International
    Conference on Natural Computation (pp. 303-312).
    Springer, Berlin, Heidelberg.
    [13] Hinton, G. E., Osindero, S., & Teh, Y. W. (2006). A
    fast learning algorithm for deep belief nets. Neural
    computation, 18(7), 1527-1554.
    [14] Hutchinson, J. M., Lo, A. W., & Poggio, T. (1994). A
    nonparametric approach to pricing and hedging
    derivative securities via learning networks. Journal
    of Finance, 49(3), 851-889.
    [15] Liang, X., Zhang, H., Xiao, J., & Chen, Y. (2009).
    Improving option price forecasts with neural networks
    and support vector regressions. Neurocomputing,
    72(13), 3055-3065.
    [16] Panayiotis, A. C., Spiros, M. H., & Chris, C. (2004,
    July). Option pricing and trading with artificial
    neural networks and advanced parametric models with
    implied parameters. In Neural Networks, 2004.
    proceedings. 2004 IEEE International Joint Conference
    on (Vol. 4, pp. 2741-2746). IEEE.
    [17] Park, H., Kim, N., & Lee, J. (2014). Parametric models
    and non-parametric machine learning models for
    predicting option prices: empirical comparison study
    over kospi 200 index options. Expert Systems with
    Applications, 41(11), 5227-5237.
    [18] Paul R. Lajbcygier, & Jerome T. Connor. (1997).
    Improved option pricing using artificial neural
    networks and, bootstrap methods. International Journal
    of Neural Systems, 8(04), 457-471.
    [19] Rumelhart, D. E., Hinton, G. E., & Williams, R. J.
    (1986). Learning representations by back-propagating
    errors. nature, 323(6088), 533.
    [20] Srivastava, R. K., Greff, K., & Schmidhuber, J.
    (2015). Highway networks.
    arXiv preprintarXiv:1505.00387.
    [21] Wang, Y. H. (2009). Nonlinear neural network
    forecasting model for stock index option price: Hybrid
    GJR–GARCH approach. Expert Systems with Applications,
    36(1), 564-570.
    [22] Wu, S., Zhong, S., & Liu, Y. (2018). Deep residual
    learning for image steganalysis. Multimedia tools and
    applications, 77(9), 10437-10453.
    Description: 碩士
    國立政治大學
    金融學系
    105352041
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0105352041
    Data Type: thesis
    DOI: 10.6814/THE.NCCU.MB.014.2018.F06
    Appears in Collections:[金融學系] 學位論文

    Files in This Item:

    File SizeFormat
    204101.pdf1489KbAdobe PDF222View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback