English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  Items with full text/Total items : 113318/144297 (79%)
Visitors : 51040115      Online Users : 873
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
Scope Tips:
  • please add "double quotation mark" for query phrases to get precise results
  • please goto advance search for comprehansive author search
  • Adv. Search
    HomeLoginUploadHelpAboutAdminister Goto mobile version
    政大機構典藏 > 商學院 > 統計學系 > 學位論文 >  Item 140.119/118356
    Please use this identifier to cite or link to this item: https://nccur.lib.nccu.edu.tw/handle/140.119/118356


    Title: 以監督式學習方法進行檢驗管控
    Quality Control by Supervised Learning Method
    Authors: 游景翔
    Yu, Ching-Hsiang
    Contributors: 周珮婷
    林怡伶

    游景翔
    Yu, Ching-Hsiang
    Keywords: 監督式學習
    品質成本
    進料檢驗
    特徵選取
    Supervised learning
    Quality cost
    Incoming quality control
    Feature selection
    Date: 2018
    Issue Date: 2018-07-04 14:45:27 (UTC+8)
    Abstract: 本研究之動機為將探討傳統的進料檢驗管控(Incoming Quality Control, IQC)之允收抽樣計畫之假設、特性以及允收過程,將其關鍵想法做為資料與變數模擬之依據,並藉由該模擬資料進行監督式機器學習模型之配適,預測材料或零件供應商所提供之抽驗資料是否具有造假之意圖。
    首先,本研究依照允收抽驗計畫的假設特性,將利用供應商抽到未符合標準公差之抽樣零件時即進行重新抽取樣本直至符合其標準的行為視為造假資料,並使用遞迴的方式進行模擬。再來,運用支持向量機、羅吉斯迴歸以及隨機森林等監督式學習方法進行預測,並比較各個變數的預測效果。
    從結果來看,依照允收抽驗樣本選擇的變數對於分辨供應商資料是否造假具有不錯的效果,依照本研究之結論,企業可依照供應商之抽驗資料轉換特性並建置供應商管理判別系統,並利用該方式作為供應商的選擇以及評估,其必可降低企業之鑑定成本(Appraisal Cost) ,造就供應商、零售商與客戶之間的三贏局面。
    The purpose of the current study was to explore the assumptions, features, and acceptance process of acceptance sampling plan in traditional Incoming Quality Control (IQC).
    Four features were proposed to describe distributions of data. Supervised machine learning models, Support Vector Machine(SVM), Logistic Regression, and Random Forest, were applied for detection of fraud.
    The results showed that the proposed features can effectively differentiate between real and fake datasets. The techniques can be used in future for supplier selection and evaluation. The identification of appraisal cost will be reduced and a triple-win situation for suppliers, retailers, and customers can be created.
    Reference: 參考文獻
    Alpaydin, E. (2010). Introduction to machine learning (2nd ed.). Cambridge, MA: MIT Press.
    Boulesteix A-L, Tutz G. (2006). Identification of interaction patterns and classification with applications to microarray data, Comput. Stat. Data Anal.
    Breiman, L. (2001). Random Forests. Machine Learning, 45(1), 5-32.
    doi:10.1023/a:1010933404324
    Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20(3),
    273-297. doi:10.1007/bf00994018
    Do, T.-N., Lenca, P., Lallich, S., & Pham, N.-K. (2010). Classifying very-high-dimensional data with random forests of oblique decision trees. In F. Guil-let, G.Ritschard, D. Zighed, & H. Briand (Eds.), Advances in knowledge discovery and management. Berlin: Springer.
    Feigenbaum, A.V.(1961), Total Quality Control, New York, McGraw-Hill.
    Gosavi, S. S. (2014). Machine learning methods for fault classification .
    Guyon, I., & Elisseeff, A. (2003). An introduction to variable and feature selection.
    Journal of machine learning research, 3(Mar), 1157-1182.
    Juran, J.M (1951), Quality Control Handbook. McGraw-Hill
    Lee Rodgers, J., & Nicewander, W. A. (1988). Thirteen Ways to Look at the
    Correlation Coefficient. The American Statistician, 42(1), 59-66.
    doi:10.1080/00031305.1988.10475524
    Ribeiro, B. (2005). Support vector machines for quality monitoring in a plastic injection molding process. IEEE Transactions on Systems, Man and Cybernetics, Part C (Applications and Reviews), 35, 401–410. doi:10.1109/TSMCC.2004.843228
    CNS,「CNS 9445-計量值檢驗抽驗程式及抽驗表」,中國國家標準(1994)。
    Description: 碩士
    國立政治大學
    統計學系
    105354022
    Source URI: http://thesis.lib.nccu.edu.tw/record/#G0105354022
    Data Type: thesis
    DOI: 10.6814/THE.NCCU.STAT.005.2018.B03
    Appears in Collections:[統計學系] 學位論文

    Files in This Item:

    File SizeFormat
    402201.pdf1339KbAdobe PDF215View/Open


    All items in 政大典藏 are protected by copyright, with all rights reserved.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - Feedback