Reference: | Amemiya, A., Angrist, J.D., Imbens, G.W., 2006, Instrumental Variables estimates of the effect of subsidized training on the quantiles of trainee earnings. Econo-metrica, 70, 91–117. Canay, I.A., 2011, A simple approach to quantile regression for panel data. Econometrics Journal, 14, 368–386. Chernozhukov, V., and C. Hansen, 2005, An IV model of quantile treatment effects.Econometrica, 73, 245–261. Chernozhukov, V., and C. Hansen, 2006, Instrumental quantile regression inference for structural and treatment effect models. Journal of Econometrics, 123, 491–525. Chesher, A.D., 2003, Identification in nonseparable models. Econometrica, 71, 1405–1441. Galvao, A.F., 2011, Quantile regression for dynamic data with fixed effects. Journal of Econometrics, 164, 142–157. Galvao, A.F., and Montes-Rojas, G.V., 2010, Penalized Quantile regression for dynamic panel data. Journal of Statistical Planning and Inference, 140, 3476–3497. Harding, M., and Lamarche, C.,2009, A quantile regression approach for estimating panel data models using instrumental variables. Economics Letters, 104, 133–135. Hong, H., and Tamer, E., 2003, Inference in censored models with endogenous regressors. Econometrica, 71, 905–932. Imbens, G.W., and Newwy, W.K., 2003, Identification and estimation of triangular simultaneous equations models without additivity. MIT working paper. Koenker, R., 2004, Quantile regression for longitudinal data. Journal of Multivariate Analysis, 91, 74–89. Koenker, R. and G. Bassett, 1978, Regression quantiles. Econometrica, 46, 33–50. Lee, S., 2007, Endogeneity in quantile regression models : A control function approach. Journal of Econometrics, 141, 1131–1158. Newey, W.K., Powell, J.L., and J.L., Vella, 1999, Nonparametric estimation of triangular simultaneous equations model. Econometrica, 67, 565–603. van der Vaart, A. W. 1998, Asymptotic Statistic. Cambridge:Cambridge University Press. van der Vaart, A. W. and J. A. Wellner W. 1996, Weak Convergence and Empirical Processes. New York : SpringerVerlag. |