政大機構典藏-National Chengchi University Institutional Repository(NCCUR):Item 140.119/118244
English  |  正體中文  |  简体中文  |  Post-Print筆數 : 27 |  全文筆數/總筆數 : 113392/144379 (79%)
造訪人次 : 51220008      線上人數 : 931
RC Version 6.0 © Powered By DSPACE, MIT. Enhanced by NTU Library IR team.
搜尋範圍 查詢小技巧:
  • 您可在西文檢索詞彙前後加上"雙引號",以獲取較精準的檢索結果
  • 若欲以作者姓名搜尋,建議至進階搜尋限定作者欄位,可獲得較完整資料
  • 進階搜尋
    政大機構典藏 > 商學院 > 金融學系 > 學位論文 >  Item 140.119/118244
    請使用永久網址來引用或連結此文件: https://nccur.lib.nccu.edu.tw/handle/140.119/118244


    題名: 卷積神經網路預測時間序列能力分析
    Analysis of the predictive ability of time series using convolutional neural network
    作者: 賴嘉蔚
    Lai, Chia-Wei
    貢獻者: 廖四郎
    Liao, Szu-Lang
    賴嘉蔚
    Lai, Chia-Wei
    關鍵詞: 深度學習
    卷積神經網路
    二維化
    時間序列預測
    演算法交易
    Deep learning
    Convolutional neural network
    Visualization
    Prediction of time series
    Algorithmic trading
    日期: 2018
    上傳時間: 2018-07-03 17:27:08 (UTC+8)
    摘要: 金融發展與科技一直以來都是密切相關的。整體來看,金融歷經了電子化、網路化等過程。而現階段,金融則是正處於自動化和智能化的階段。在本研究中,我們試圖將深度學習的概念與技術,應用於金融商品價格走勢的預測。主要概念是將金融商品一段時間的開盤價、最高價、最低價、收盤價一維時間序列資料二維化,從過去傳統一維測度的角度研究時間序列走勢,到本研究將視角提升到二維的測度。接著利用在圖像辨識有著卓越表現的卷積神經網路(CNN)進行特徵的萃取,進行金融商品未來漲跌的分類,藉此達到預測走勢的效果,進而建構一套可以穩定擊敗大盤的交易策略。實證發現,透過將時間序列二維化的方法,模型能比單純輸入時間序列數值學習到更多的資訊,績效也更穩定。而在預測金融商品價格走勢之外,我們一樣可以透過利用人工智慧的技術,創新金融商品和服務的模式,改善客戶體驗、提高服務效率。因此,在台灣開始發展金融科技之際,以期本研究有助於往後的研究者、金融機構和監理機關研發相關的技術。
    Financial development and technology are always closely related. On the whole, finance has gone through the process of electronicization and networking. At the present stage, finance is in the process of automatization and intelligentization. In this paper, we try to apply the concepts and techniques of deep learning to the forecast of price trend of financial products. The main concept is that we transform one-dimensional time-series data of opening price, highest price, lowest price, closing price into two-dimensional planes. From the past, most researchers used one-dimensional measure to study time-series. Now we use two-dimensional measure to study time-series. Then, we use the convolution neural network (CNN), which has excellent performance in image recognition to capture features and make the classification of price trend, so as to achieve the effect of forecasting price trend and construct a trading strategy which can stably beat the market. The empirical result show that deep learning models can learn better by using the method of visualization than simply inputting time series values and the performance is more stable. Therefore, as Taiwan begins to develop FinTech, it is hoped that this paper will help future researchers, financial institutions, and supervision agencies develop related technologies.
    參考文獻: [1] Asness, C. S., T. J. Moskowitz and L. H. Pedersen, (2013). Value and Momentum Everywhere. Journal of Finance, Volume 68, Issue 3, Pages 929-985.
    [2] Banz, R. W.(1981). The relationship between return and market value of common stocks. Journal of Financial Economics, Volume 9, Issue 1, Pages 3-18.
    [3] Basu, S., (1997). The conservatism principle and the asymmetric timeliness of earnings. Journal of Accounting and Economics, Volume 24, Issue 1, Pages 3-37.
    [4] Bengio, Y., V.P. Lauzon, and R. Ducharme, (2001). Experiments on the application of IOHMMs to model financial returns series. Neural Networks, IEEE Transactions on, 12(1), 113-123.
    [5] Campbell, J. Y., and R.J. Shiller, (1987). Stock Prices, Earnings, and Expected Dividends. The Journal of Finance Vol. 43, No. 3, Papers and Proceedings of the Forty-Seventh Annual Meeting of the American Finance Association, Chicago, Illinois, December 28-30, pp. 661-676.
    [6] Chapados, N., and Y. Bengio, (2001). Cost functions and model combination for VaR-based asset allocation using neural networks. Neural Networks, IEEE Transactions on, 12(4), 890-906.
    [7] Chen, S. M., and P.Y, Kao, (2013). TAIEX forecasting based on fuzzy time series, particle swarm optimization techniques and support vector machine. information Sciences, 247, 62-71.
    [8] Duchi, J.,E. Hazan, and Y. Singer, (2011) Adaptive Subgradient Methods for Stochastic Optimization. The Journal of Machine Learning Research, Volume 12, Pages 2121-2159.
    [9] Fama, E. F., (1970). Efficient Capital Markets: A Review of Theory and Empirical Work. The Journal of Finance, Vol. 25, No. 2, Papers and Proceedings of the Twenty-Eighth Annual Meeting of the American Finance Association New York, N.Y., pp. 383-417.
    [10] Fama, E.F., and K.R. French, (1988). Dividend Yield and Expected Stock Return. Journal of Financial Economics, Volume 22, Issue 1, Pages 3-25.
    [11] Fama, E. F., and K.R. French, (1992). The Cross-Section of Expected Stock Returns. The Journal of Finance, Vol. 47, No. 2, pp. 427-465.
    [12] Gençay, R., and R. Gibson, (2007). Model risk for European-style stock index options. Neural Networks, IEEE Transactions on, 18(1), 193-202.
    [13] Jegadeesh, N., and S. Titman, (1993). Returns to buying winners and selling losers: Implications for stock market efficiency. The Journal of Finance, Vol. 48, Issue 1, pp. 65-91.
    [14] Keim, D. B., and R. F. Stambaugh, (1986). Predicting Return in The Stock and Bond Markets. Journal of Financial Economics, Volume 17, Issue 2, Pages 357-390.
    [15] Kendall, M. G., and A. B. Hill, (1953). The Analytics of Economic Time Series Part 1: Prices. Journal of the Royal Statistical Society, Series A (General), Volumn 116, Issue 1, 11-34.
    [16] Kercheval, A. N., and Y. Zhang, (2013). Modeling high-frequency limit order book dynamics with support vector machines. Quantitative Finance Volume 15,Issue 8: Special Issue on High Frequency Data Modeling in Finance, Pages 1315-1329.
    [17] Kingma, D. P. and J. Ba, (2015). Adam: A Method for Stochastic Optimization. 3rd International Conference for Learning Representations, San Diego.
    [18] Krizhevsky, A., I. Sutskever, and G.E. Hinton, (2012). ImageNet Classification with Deep Convolutional Neural Networks. Proceeding NIPS`12 Proceedings of the 25th International Conference on Neural Information Processing Systems - Volume 1,Pages 1097-1105.
    [19] Kwon, Y. K. and B. R. Moon, (2007). A hybrid neurogenetic approach for stock forecasting. Neural Networks, IEEE Transactions on, 18(3), 851-864.
    [20] LeCun, Y. and Y. Bengio, (1995). Convolutional networks for images, speech, and time series.The handbook of brain theory and neural networks. The handbook of brain theory and neural networks, Pages 255-258.
    [21] LeCun, Y., L. Bottou, Y. Bengio, and P. Haffner, (1998). Gradient-based learning applied to document recognition. Proc. IEEE, vol. 86, no. 11, pp. 2278-2324.
    [22] Lu, T. H. and Y. C. Chen, (2015). Trend definition or holding strategy: What determines the profitability of candlestick charting? Journal of Banking & Finance, Volume 61, Pages 172-183.
    [23] Moskowitz, T. J., Y. H. Ooi and L. H. Pedersn, (2012). Time series momentum. Journal of Financial Economics, Volume 104, Issue 2, Pages 228-250.
    [24] Platanios, E. and S. P. Chatzis, (2014). Gaussian Process-Mixture Conditional Heteroscedasticity. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 36(5), 888-900.
    [25] Rojas, R., (1996). The Backpropagation Algorithm. Neural Networks, A Systematic Introduction. Pages 151-184.
    [26] Sitte, R. and J. Sitte, (2000). Analysis of the predictive ability of time delay neural networks applied to the S&P 500 time series. Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 30(4), 568-572.
    [27] Takeuchi, L. and Y.-Y. Lee, (2013). Applying Deep Learning to Enhance Momentum Trading Strategies in Stocks.
    [28] Tino, P., C. Schittenkopf, and G. Dorffner, (2001). Financial volatility trading using recurrent neural networks. Neural Networks, IEEE Transactions on,12(4), 865-874.
    [29] Wang, Z., T. Oates, (2015). Imaging time-series to improve classification and imputation.
    [30] Xu, Z., S. MacEachern and X. Xu, (2007). Modeling Non-Gaussian Time Series with Nonparametric Bayesian Model. Pattern Analysis and Machine Intelligence, IEEE Transactions on, 37(2), 372-382.
    [31] Zheng, Y., Q. Liu, E. Chen, Y. Ge, J. L. Zhao, (2014). Time series classification using multi-channels deep convolutional neural Networks. Proceedings of the International Conference on Web-Age Information Management (WAIM), pp.298–310.
    [32] 黃君平,(2016)。基於深度學習技術之金融市場價格趨勢預測。
    描述: 碩士
    國立政治大學
    金融學系
    1053520303
    資料來源: http://thesis.lib.nccu.edu.tw/record/#G1053520303
    資料類型: thesis
    DOI: 10.6814/THE.NCCU.MB.005.2018.F06
    顯示於類別:[金融學系] 學位論文

    文件中的檔案:

    檔案 大小格式瀏覽次數
    030301.pdf3119KbAdobe PDF21982檢視/開啟


    在政大典藏中所有的資料項目都受到原著作權保護.


    社群 sharing

    著作權政策宣告 Copyright Announcement
    1.本網站之數位內容為國立政治大學所收錄之機構典藏,無償提供學術研究與公眾教育等公益性使用,惟仍請適度,合理使用本網站之內容,以尊重著作權人之權益。商業上之利用,則請先取得著作權人之授權。
    The digital content of this website is part of National Chengchi University Institutional Repository. It provides free access to academic research and public education for non-commercial use. Please utilize it in a proper and reasonable manner and respect the rights of copyright owners. For commercial use, please obtain authorization from the copyright owner in advance.

    2.本網站之製作,已盡力防止侵害著作權人之權益,如仍發現本網站之數位內容有侵害著作權人權益情事者,請權利人通知本網站維護人員(nccur@nccu.edu.tw),維護人員將立即採取移除該數位著作等補救措施。
    NCCU Institutional Repository is made to protect the interests of copyright owners. If you believe that any material on the website infringes copyright, please contact our staff(nccur@nccu.edu.tw). We will remove the work from the repository and investigate your claim.
    DSpace Software Copyright © 2002-2004  MIT &  Hewlett-Packard  /   Enhanced by   NTU Library IR team Copyright ©   - 回饋